Suppr超能文献

内部连接构象如何有助于 RNA 结构域折叠。

How the Conformations of an Internal Junction Contribute to Fold an RNA Domain.

机构信息

School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States.

出版信息

J Phys Chem B. 2018 Dec 13;122(49):11363-11372. doi: 10.1021/acs.jpcb.8b07262. Epub 2018 Oct 17.

Abstract

Like proteins, some RNAs fold to compact structures. We can model functional RNAs as a series of short, rigid, base-paired elements, connected by non-base-paired nucleotides that serve as junctions. These connecting regions bend and twist, facilitating the formation of tertiary contacts that stabilize compact states. Here, we explore the roles of salt and junction sequence in determining the structures of a ubiquitous connector: an asymmetric internal loop. We focus on the J5/5a junction from the widely studied P4-P6 domain of the Tetrahymena ribozyme. Following the addition of magnesium ions to fold P4-P6, this junction bends dramatically, bringing the two halves of the RNA domain together for tertiary contact engagement. Using single-molecule fluorescence resonance energy transfer (smFRET), we examine the role of sequence and salt on model RNA constructs that contain these junction regions. We explore the wild-type J5/5a junction as well as two sequence variants. These junctions display distinct, salt-dependent conformations. Small-angle X-ray scattering (SAXS) measurements verify that these effects persist in the full-length P4-P6 domain. These measurements underscore the importance of junction sequence and interactions with ions in facilitating RNA folding.

摘要

与蛋白质一样,一些 RNA 也会折叠成紧凑的结构。我们可以将功能性 RNA 建模为一系列短的、刚性的、碱基配对的元件,通过非碱基配对的核苷酸连接,这些核苷酸充当连接点。这些连接区域会弯曲和扭曲,促进形成稳定紧凑状态的三级接触。在这里,我们探索盐和连接序列在决定一种普遍存在的连接体(不对称内部环)结构中的作用。我们专注于 Tetrahymena 核酶的广泛研究的 P4-P6 结构域中的 J5/5a 连接点。在向 P4-P6 折叠中添加镁离子后,该连接点急剧弯曲,将 RNA 结构域的两半聚集在一起进行三级接触。使用单分子荧光共振能量转移(smFRET),我们检查了包含这些连接区的模型 RNA 构建体中序列和盐的作用。我们探索了野生型 J5/5a 连接点以及两种序列变体。这些连接点显示出不同的、依赖盐的构象。小角 X 射线散射(SAXS)测量验证了这些效应在全长 P4-P6 结构域中仍然存在。这些测量强调了连接序列和与离子相互作用在促进 RNA 折叠中的重要性。

相似文献

1
How the Conformations of an Internal Junction Contribute to Fold an RNA Domain.
J Phys Chem B. 2018 Dec 13;122(49):11363-11372. doi: 10.1021/acs.jpcb.8b07262. Epub 2018 Oct 17.
2
Folding mechanism of the Tetrahymena ribozyme P4-P6 domain.
Biochemistry. 2000 Sep 12;39(36):10975-85. doi: 10.1021/bi0010118.
3
Two major tertiary folding transitions of the Tetrahymena catalytic RNA.
EMBO J. 1994 Jun 1;13(11):2669-76. doi: 10.1002/j.1460-2075.1994.tb06557.x.
5
Coaxially stacked RNA helices in the catalytic center of the Tetrahymena ribozyme.
Science. 1994 Sep 16;265(5179):1709-12. doi: 10.1126/science.8085157.
6
Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA.
J Biol Chem. 2011 Jun 3;286(22):19872-9. doi: 10.1074/jbc.M111.235465. Epub 2011 Apr 8.
7
An early transition state for folding of the P4-P6 RNA domain.
RNA. 2001 Feb;7(2):161-6. doi: 10.1017/s1355838201001716.
8
Hinge stiffness is a barrier to RNA folding.
J Mol Biol. 2008 Jun 13;379(4):859-70. doi: 10.1016/j.jmb.2008.04.013. Epub 2008 Apr 10.
9
RNA tertiary folding monitored by fluorescence of covalently attached pyrene.
Biochemistry. 1999 Oct 26;38(43):14224-37. doi: 10.1021/bi991333f.
10
Self-splicing of the Tetrahymena group I ribozyme without conserved base-triples.
Genes Cells. 2001 May;6(5):411-20. doi: 10.1046/j.1365-2443.2001.00437.x.

引用本文的文献

1
Pressure pushes tRNA into excited conformational states.
Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2215556120. doi: 10.1073/pnas.2215556120. Epub 2023 Jun 20.
2
Refining the RNA Force Field with Small-Angle X-ray Scattering of Helix-Junction-Helix RNA.
J Phys Chem Lett. 2022 Apr 21;13(15):3400-3408. doi: 10.1021/acs.jpclett.2c00359. Epub 2022 Apr 11.
3
Machine learning deciphers structural features of RNA duplexes measured with solution X-ray scattering.
IUCrJ. 2020 Aug 12;7(Pt 5):870-880. doi: 10.1107/S2052252520008830. eCollection 2020 Sep 1.
4
Visualizing Disordered Single-Stranded RNA: Connecting Sequence, Structure, and Electrostatics.
J Am Chem Soc. 2020 Jan 8;142(1):109-119. doi: 10.1021/jacs.9b04461. Epub 2019 Dec 19.
5
Salt Dependence of A-Form RNA Duplexes: Structures and Implications.
J Phys Chem B. 2019 Nov 21;123(46):9773-9785. doi: 10.1021/acs.jpcb.9b07502. Epub 2019 Nov 11.
7
Going beyond base-pairs: topology-based characterization of base-multiplets in RNA.
RNA. 2019 May;25(5):573-589. doi: 10.1261/rna.068551.118. Epub 2019 Feb 21.

本文引用的文献

1
High-Throughput Investigation of Diverse Junction Elements in RNA Tertiary Folding.
Cell. 2018 Jul 12;174(2):377-390.e20. doi: 10.1016/j.cell.2018.05.038. Epub 2018 Jun 28.
2
RNA force field with accuracy comparable to state-of-the-art protein force fields.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1346-E1355. doi: 10.1073/pnas.1713027115. Epub 2018 Jan 29.
3
: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis.
J Appl Crystallogr. 2017 Sep 5;50(Pt 5):1545-1553. doi: 10.1107/S1600576717011438. eCollection 2017 Oct 1.
4
Tuning RNA folding and function through rational design of junction topology.
Nucleic Acids Res. 2017 Sep 19;45(16):9706-9715. doi: 10.1093/nar/gkx614.
5
Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):E7688-E7696. doi: 10.1073/pnas.1703507114. Epub 2017 Aug 24.
6
, a program for rapid shape determination in small-angle scattering.
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
7
Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E4956-65. doi: 10.1073/pnas.1525082113. Epub 2016 Aug 4.
9
Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity.
Nat Struct Mol Biol. 2016 May;23(5):426-33. doi: 10.1038/nsmb.3203. Epub 2016 Apr 11.
10
Tuning RNA Flexibility with Helix Length and Junction Sequence.
Biophys J. 2015 Dec 15;109(12):2644-2653. doi: 10.1016/j.bpj.2015.10.039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验