Suppr超能文献

有机溶剂中盐和水协同剥离石墨以高效、大规模制备高质量石墨烯。

Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene.

机构信息

School of Science, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.

School of Science, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China; Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

J Colloid Interface Sci. 2019 Feb 1;535:92-99. doi: 10.1016/j.jcis.2018.09.094. Epub 2018 Sep 27.

Abstract

Graphene has attracted enormous attention due to its unique physical properties and attractive applications in many fields. However, it is an ongoing challenge to develop a facile and low-cost method for the large scale preparation of high-quality graphene (HQGr). In this work, we have developed an improved liquid-phase exfoliation method to mass produce HQGr. This method is quite simple but efficient by exfoliation of graphite in organic solvent with the co-assistance of sodium citrate and water. Remarkably, the concentration of as-exfoliated HQGr was as high as 0.71 mg/mL under optimal conditions, while the oxygen content in HQGr was only 2.39%. After annealing at 500 °C for 2 h in argon atmosphere, the mean conductivity of annealed HQGr was as high as 1.4 × 10 S m. Therefore, this facile method for liquid-phase exfoliation of graphite has excellent potential in the industrial-scale production of HQGr for numerous applications in energy storage, optical and electronic fields.

摘要

由于其独特的物理性质和在许多领域的诱人应用,石墨烯引起了极大的关注。然而,开发一种简便且低成本的方法来大规模制备高质量石墨烯(HQGr)仍然是一个挑战。在这项工作中,我们开发了一种改进的液相剥离方法来大规模生产 HQGr。这种方法非常简单但非常有效,通过在有机溶剂中与柠檬酸钠和水共同作用来剥离石墨。值得注意的是,在最佳条件下,剥离得到的 HQGr 的浓度高达 0.71mg/mL,而 HQGr 中的氧含量仅为 2.39%。在氩气气氛中 500°C 退火 2 小时后,退火后的 HQGr 的平均电导率高达 1.4×10 S m。因此,这种简便的石墨液相剥离方法在工业规模生产 HQGr 方面具有巨大的潜力,可应用于储能、光学和电子等领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验