Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität , Duesbergweg 10-14 , 55128 Mainz , Germany.
Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom.
Inorg Chem. 2018 Nov 5;57(21):13640-13652. doi: 10.1021/acs.inorgchem.8b02236. Epub 2018 Oct 5.
Controlling the morphology of noble-metal nanoparticles is mandatory to tune specific properties such as catalytic and optical behavior. Heterodimers consisting of two noble metals have been synthesized, so far mostly in aqueous media using selective surfactants or chemical etching strategies. We report a facile synthesis for Au@Pd and Pd@Au heterodimer nanoparticles (NPs) with morphologies ranging from segregated domains (heteroparticles) to core-shell structures by applying a seed-mediated growth process with Au and Pd seed nanoparticles in 1-octadecene (ODE), which is a high-boiling organic solvent. The as-synthesized oleylamine (OAm) functionalized Au NPs led to the formation of OAm-Au@Pd heteroparticles with a "windmill" morphology, having an Au core and Pd "blades". The multiply twinned structure of the Au seed particles (⌀ ≈ 9-11 nm) is associated with a reduced barrier for heterogeneous nucleation. This leads to island growth of bimetallic Au@Pd heteroparticles with less-regular morphologies. The reaction process can be controlled by tuning the surface chemistry with organic ligands. Functionalization of Au NPs (Ø ≈ 9-11 nm) with 1-octadecanethiol (ODT) led to the formation of ODT-Au@Pd NPs with a closed Pd shell through a strong ligand-metal binding, which is accompanied by a redistribution of the electron density. Experiments with varied Pd content revealed surface epitaxial growth of Pd on Au. For OAm-Pd and ODT-Pd seed particles, faceted, Au-rich domain NPs and impeded core-shell NPs were obtained, respectively. This is related to the high surface energy of the small Pd seed particles (⌀ ≈ 5-7 nm). The metal distribution of all bimetallic NPs was analyzed by extended (aberration-corrected) transmission electron microscopy (HR-TEM, HAADF-STEM, EDX mapping, ED). The Au and Pd NPs, as well as the ODT-Au@Pd and OAm-Pd@Au heteroparticles, catalyze the reduction of 4-nitrophenol to 4-aminophenol with borohydride. The catalytic activity is dictated by the particle structure. OAm-Au@Pd heteroparticles with faceted Au domains had the highest activity because of a mixed Au-Pd surface structure, while ODT-Au@Pd NPs, where the active Au core is covered by a Pd shell, had the lowest activity.
控制贵金属纳米粒子的形态对于调节其特定性质(如催化和光学性能)是强制性的。迄今为止,由两种贵金属组成的杂二聚体主要在水相中使用选择性表面活性剂或化学蚀刻策略合成。我们报告了一种在 1-十八烯(ODE)中使用 Au 和 Pd 种子纳米粒子的种子介导生长过程,轻松合成具有从分离域(杂粒子)到核壳结构的 Au@Pd 和 Pd@Au 杂二聚体纳米粒子(NPs)的方法,ODE 是一种高沸点有机溶剂。合成的油胺(OAm)功能化 Au NPs 导致 OAm-Au@Pd 杂粒子的形成,具有“风车”形态,具有 Au 核和 Pd“叶片”。Au 种子颗粒的多重孪晶结构(⌀≈9-11nm)与异质成核的势垒降低有关。这导致具有较不规则形态的双金属 Au@Pd 杂粒子的岛状生长。通过调节表面化学与有机配体,可控制反应过程。用 1-十八硫醇(ODT)功能化(Ø≈9-11nm)Au NPs 可形成具有闭合 Pd 壳的 ODT-Au@Pd NPs,这是通过强配体-金属键合实现的,这伴随着电子密度的重新分布。用不同 Pd 含量进行的实验表明 Pd 在 Au 上的表面外延生长。对于 OAm-Pd 和 ODT-Pd 种子颗粒,分别获得了具有面心立方、富 Au 域 NPs 和受阻核壳 NPs。这与小 Pd 种子颗粒(⌀≈5-7nm)的高表面能有关。通过扩展(校正像差的)透射电子显微镜(HR-TEM、HAADF-STEM、EDX 映射、ED)分析所有双金属 NPs 的金属分布。Au 和 Pd NPs 以及 ODT-Au@Pd 和 OAm-Pd@Au 杂粒子都能催化硼氢化钠还原 4-硝基苯酚为 4-氨基酚。催化活性由颗粒结构决定。具有面心立方 Au 域的 OAm-Au@Pd 杂粒子具有最高的活性,因为其具有混合的 Au-Pd 表面结构,而 ODT-Au@Pd NPs 中,活性 Au 核被 Pd 壳覆盖,具有最低的活性。