Suppr超能文献

肿瘤荷瘤小鼠恶病质骨骼肌萎缩发展的转录组学分析。

Transcriptomic analysis of the development of skeletal muscle atrophy in cancer-cachexia in tumor-bearing mice.

机构信息

Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, Arkansas.

Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden.

出版信息

Physiol Genomics. 2018 Dec 1;50(12):1071-1082. doi: 10.1152/physiolgenomics.00061.2018. Epub 2018 Oct 5.

Abstract

Cancer-cachexia (CC) is a wasting condition directly responsible for 20-40% of cancer-related deaths. The mechanisms controlling development of CC-induced muscle wasting are not fully elucidated. Most investigations focus on the postcachectic state and do not examine progression of the condition. We recently demonstrated mitochondrial degenerations precede muscle wasting in time course progression of CC. However, the extent of muscle perturbations before wasting in CC is unknown. Therefore, we performed global gene expression analysis in CC-induced muscle wasting to enhance understanding of intramuscular perturbations across the development of CC. Lewis lung carcinoma (LLC) was injected into the hind-flank of C57BL6/J mice at 8 wk of age with tumor allowed to develop for 1, 2, 3, or 4 wk and compared with PBS-injected control. Muscle wasting was evident at 4 wk LLC. RNA sequencing of gastrocnemius muscle samples showed widespread alterations in LLC compared with PBS animals with largest differences seen in 4 wk LLC, suggesting extensive transcriptomic alterations concurrent to muscle wasting. Commonly altered pathways included: mitochondrial dysfunction and protein ubiquitination, along with other less studied processes in this condition regulating transcription/translation and cytoskeletal structure. Current findings present novel evidence of transcriptomic shifts and altered cellular pathways in CC-induced muscle wasting.

摘要

癌症恶病质(CC)是一种直接导致 20-40%癌症相关死亡的消耗性疾病。控制 CC 引起的肌肉消耗的机制尚未完全阐明。大多数研究集中在后恶病质状态,而不检查病情的进展。我们最近证明,在 CC 进展的时间过程中,线粒体退化先于肌肉消耗。然而,在 CC 中肌肉消耗之前肌肉的紊乱程度尚不清楚。因此,我们对 CC 诱导的肌肉消耗进行了全基因表达分析,以增强对 CC 发展过程中肌肉紊乱的理解。在 8 周龄的 C57BL6/J 小鼠的后肢侧腹注射 Lewis 肺癌(LLC),允许肿瘤生长 1、2、3 或 4 周,并与 PBS 注射对照进行比较。在 4 周 LLC 时出现明显的肌肉消耗。与 PBS 动物相比,对腓肠肌样本进行 RNA 测序显示 LLC 中广泛存在改变,在 4 周 LLC 中差异最大,提示在肌肉消耗的同时存在广泛的转录组改变。常见改变的途径包括:线粒体功能障碍和蛋白质泛素化,以及在这种情况下调节转录/翻译和细胞骨架结构的其他研究较少的过程。目前的研究结果提供了 CC 诱导的肌肉消耗中转录组变化和改变的细胞途径的新证据。

相似文献

1
Transcriptomic analysis of the development of skeletal muscle atrophy in cancer-cachexia in tumor-bearing mice.
Physiol Genomics. 2018 Dec 1;50(12):1071-1082. doi: 10.1152/physiolgenomics.00061.2018. Epub 2018 Oct 5.
2
Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice.
J Cachexia Sarcopenia Muscle. 2017 Dec;8(6):926-938. doi: 10.1002/jcsm.12232. Epub 2017 Aug 28.
4
Myostatin gene inactivation prevents skeletal muscle wasting in cancer.
Cancer Res. 2014 Dec 15;74(24):7344-56. doi: 10.1158/0008-5472.CAN-14-0057. Epub 2014 Oct 21.
5
Development of metabolic and contractile alterations in development of cancer cachexia in female tumor-bearing mice.
J Appl Physiol (1985). 2022 Jan 1;132(1):58-72. doi: 10.1152/japplphysiol.00660.2021. Epub 2021 Nov 11.
6
Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size.
Physiol Genomics. 2017 May 1;49(5):253-260. doi: 10.1152/physiolgenomics.00006.2017. Epub 2017 Mar 24.
7
Cancer-Induced Muscle Wasting Requires p38β MAPK Activation of p300.
Cancer Res. 2021 Feb 15;81(4):885-897. doi: 10.1158/0008-5472.CAN-19-3219. Epub 2020 Dec 22.
8
Obesity worsens mitochondrial quality control and does not protect against skeletal muscle wasting in murine cancer cachexia.
J Cachexia Sarcopenia Muscle. 2024 Feb;15(1):124-137. doi: 10.1002/jcsm.13391. Epub 2023 Dec 7.
9
Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice.
Am J Physiol Regul Integr Comp Physiol. 2011 Sep;301(3):R716-26. doi: 10.1152/ajpregu.00121.2011. Epub 2011 Jun 15.

引用本文的文献

2
The TWEAK/Fn14 signaling mediates skeletal muscle wasting during cancer cachexia.
iScience. 2025 May 30;28(7):112714. doi: 10.1016/j.isci.2025.112714. eCollection 2025 Jul 18.
3
Global mitophagy inhibition via BNIP3 ablation is not sufficient to alleviate skeletal muscle impairments in male and female tumor-bearing mice.
J Appl Physiol (1985). 2025 Jun 1;138(6):1516-1531. doi: 10.1152/japplphysiol.00009.2025. Epub 2025 May 16.
4
Hallmarks of Cancer Cachexia: Sexual Dimorphism in Related Pathways.
Int J Mol Sci. 2025 Apr 22;26(9):3952. doi: 10.3390/ijms26093952.
5
Complement pathway activation mediates pancreatic cancer-induced muscle wasting and pathological remodeling.
J Clin Invest. 2025 Apr 8;135(12). doi: 10.1172/JCI178806. eCollection 2025 Jun 16.
6
Local Inflammation Precedes Diaphragm Wasting and Fibrotic Remodelling in a Mouse Model of Pancreatic Cancer.
J Cachexia Sarcopenia Muscle. 2025 Feb;16(1):e13668. doi: 10.1002/jcsm.13668.
7
Transcriptional analysis of cancer cachexia: conserved and unique features across preclinical models and biological sex.
Am J Physiol Cell Physiol. 2024 Dec 1;327(6):C1514-C1531. doi: 10.1152/ajpcell.00647.2024. Epub 2024 Oct 28.
8
Sequencing technology in sarcopenia: current research progress and future trends.
Front Mol Biosci. 2024 Sep 3;11:1309006. doi: 10.3389/fmolb.2024.1309006. eCollection 2024.
9
Zfp697 is an RNA-binding protein that regulates skeletal muscle inflammation and remodeling.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2319724121. doi: 10.1073/pnas.2319724121. Epub 2024 Aug 14.
10
Exploring heterogeneity: a dive into preclinical models of cancer cachexia.
Am J Physiol Cell Physiol. 2024 Aug 1;327(2):C310-C328. doi: 10.1152/ajpcell.00317.2024. Epub 2024 Jun 10.

本文引用的文献

1
Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice.
J Cachexia Sarcopenia Muscle. 2017 Dec;8(6):926-938. doi: 10.1002/jcsm.12232. Epub 2017 Aug 28.
2
Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size.
Physiol Genomics. 2017 May 1;49(5):253-260. doi: 10.1152/physiolgenomics.00006.2017. Epub 2017 Mar 24.
3
Skeletal muscle loss and prognosis of breast cancer patients.
Support Care Cancer. 2017 Jul;25(7):2221-2227. doi: 10.1007/s00520-017-3628-5. Epub 2017 Feb 15.
5
Cachexia at diagnosis is associated with poor survival in head and neck cancer patients.
Acta Otolaryngol. 2017 Jul;137(7):778-785. doi: 10.1080/00016489.2016.1277263. Epub 2017 Jan 26.
6
Perspectives of health care professionals on cancer cachexia: results from three global surveys.
Ann Oncol. 2016 Dec;27(12):2230-2236. doi: 10.1093/annonc/mdw420. Epub 2016 Oct 17.
7
Comparative molecular analysis of early and late cancer cachexia-induced muscle wasting in mouse models.
Oncol Rep. 2016 Dec;36(6):3291-3302. doi: 10.3892/or.2016.5165. Epub 2016 Oct 12.
8
Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.
Nat Protoc. 2016 Sep;11(9):1650-67. doi: 10.1038/nprot.2016.095. Epub 2016 Aug 11.
9
Autophagy is induced in the skeletal muscle of cachectic cancer patients.
Sci Rep. 2016 Jul 27;6:30340. doi: 10.1038/srep30340.
10
Molecular Pathways: Cachexia Signaling-A Targeted Approach to Cancer Treatment.
Clin Cancer Res. 2016 Aug 15;22(16):3999-4004. doi: 10.1158/1078-0432.CCR-16-0495. Epub 2016 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验