Oram J F, Johnson C J, Brown T A
J Biol Chem. 1987 Feb 15;262(5):2405-10.
Cultured extrahepatic cells possess a specific high affinity receptor for high density lipoprotein (HDL) that is induced by cholesterol delivery to cells. Current results suggest that HDL receptors on cultured human fibroblasts and mouse peritoneal macrophages promote reversible binding of HDL to the cell surface without internalization of lipoprotein particles. When 125I-HDL3 was bound to cultured cells at 0 degrees C and then warmed to 37 degrees C after removal of unbound lipoprotein, most of the cell surface-bound HDL was released rapidly (t1/2 = 3 min) into the medium without entering a cellular pool that was inaccessible to digestion by trypsin at 0 degrees C. This lack of internalization of HDL was evident under conditions where internalization of 125I-low density lipoprotein and 125I-transferrin were readily detected. When cells were exposed to 125I-HDL3 at 37 degrees C, only a trace amount of iodinated apoprotein remained associated with cells after treatment of cells with trypsin. Fibroblasts treated with medium containing increasing concentrations of cholesterol exhibited a dose-dependent increase in reversible, trypsin-sensitive binding of 125I-HDL3 at 37 degrees C without an attendant increase in trypsin-resistant binding. These results suggest that reversible binding of HDL to its cell-surface receptor without subsequent endocytosis of receptor-HDL complexes is the mechanism by which HDL receptors facilitate cholesterol transport from cells.