Department d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
Unitat de Microscòpia Confocal, Servei d'Anatomia Patològica, Institut Pediàtric de Malalties Rares. Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.
J Microsc. 2019 Jan;273(1):53-64. doi: 10.1111/jmi.12760. Epub 2018 Oct 8.
Although cationic polymers are widely used for DNA delivery, the relationship between the properties of the formed complexes and their biological activity is not fully understood. Here, we propose a novel procedure consisting of superresolved images coupled with quantitative colocalization to analyse DNA release in living cells. This work compares the different workflows available in a quantitative colocalization study of DNA delivery using polyethylenimine as transfection reagent. A nimble workflow with deconvolution in three-dimensional images was developed. Among the different colocalization coefficients, Manders' colocalization coefficient was the best to track the complexes. Results showed that DNA/polyethylenimine complexes were tightly interacting at the time of transfection and their disassembly was observed between 2 and 10 h after their uptake. Heterogenicity was found in the intracellular fate of each complex. At 24 h, some complexes were still present underneath the nuclear envelope. Overall, this study opens the door for particle tracking assessment with three-dimensional imaging at intracellular level. LAY DESCRIPTION: DNA delivery technologies in living cells are of high relevance in the biotechnology field. The transient expression of a gene of interest enables the production of a wide range of new therapeutic candidates for clinical purposes. However, the introduction of an exogenous DNA construct into a cell culture requires the use of certain vehicles that protect the DNA from host cell DNases and deliver it into the cell nucleus. From the different systems available, polyethylenimine (PEI) has been extensively used in transient gene expression strategies for the last three decades. However, the intracellular fate of the formed DNA/PEI complexes and the DNA release from the complexes is still poorly understood. In this work, we propose the application of combined superresolved images through mathematical deconvolution to colocalization studies of DNA/PEI complexes evolution in living mammalian cell cultures. Both specimens were covalently labelled with Cy3 and Cy5 dye, respectively, and the kinetics of its disassembly process within the cells was tracked over the time. Because of the specific features of the formed-complexes, a comparative study of the different colocalization coefficients was performed towards optimizing the analysis of these particles with confocal microscopy. Besides, the 3D imaging of the process allowed the direct visualization of a partial DNA/PEI complexes disassembly and the location of those complexes underneath the nuclear envelope during the cell production phase (24 h after the uptake).
尽管阳离子聚合物被广泛用于 DNA 递送,但形成的复合物的性质与其生物活性之间的关系尚未完全了解。在这里,我们提出了一种新的程序,包括超分辨率图像与定量共定位相结合,以分析活细胞中的 DNA 释放。这项工作比较了使用聚乙烯亚胺作为转染试剂进行 DNA 递送的定量共定位研究中可用的不同工作流程。开发了一种具有三维图像去卷积的灵活工作流程。在不同的共定位系数中,曼德斯共定位系数是跟踪复合物的最佳选择。结果表明,在转染时,DNA/聚乙烯亚胺复合物紧密相互作用,在摄取后 2 至 10 小时观察到复合物的解体。每个复合物的细胞内命运存在异质性。在 24 小时时,一些复合物仍位于核膜下方。总体而言,这项研究为细胞内水平的三维成像的颗粒跟踪评估开辟了道路。
在活细胞中进行 DNA 递送技术在生物技术领域具有重要意义。目的基因的瞬时表达能够产生广泛的新治疗候选物,用于临床目的。然而,将外源 DNA 构建体引入细胞培养物需要使用某些载体来保护 DNA 免受宿主细胞 DNase 的侵害并将其递送到细胞核中。在可用的不同系统中,聚乙烯亚胺(PEI)在过去三十年中被广泛用于瞬时基因表达策略。然而,形成的 DNA/PEI 复合物的细胞内命运以及从复合物中释放 DNA 的过程仍知之甚少。在这项工作中,我们提出了应用数学去卷积的组合超分辨率图像进行活哺乳动物细胞培养物中 DNA/PEI 复合物演变的共定位研究。这两个标本分别用 Cy3 和 Cy5 染料共价标记,并在一段时间内跟踪其在细胞内解体过程的动力学。由于形成复合物的特殊性质,对不同共定位系数进行了比较研究,以优化使用共聚焦显微镜对这些颗粒进行分析。此外,该过程的 3D 成像允许直接观察到部分 DNA/PEI 复合物的解体,以及在细胞产生阶段(摄取后 24 小时)位于核膜下方的那些复合物的位置。