Suppr超能文献

联合谱嵌入和谱旋转的谱聚类。

Spectral Clustering by Joint Spectral Embedding and Spectral Rotation.

出版信息

IEEE Trans Cybern. 2020 Jan;50(1):247-258. doi: 10.1109/TCYB.2018.2868742. Epub 2018 Oct 3.

Abstract

Spectral clustering is an important clustering method widely used for pattern recognition and image segmentation. Classical spectral clustering algorithms consist of two separate stages: 1) solving a relaxed continuous optimization problem to obtain a real matrix followed by 2) applying K -means or spectral rotation to round the real matrix (i.e., continuous clustering result) into a binary matrix called the cluster indicator matrix. Such a separate scheme is not guaranteed to achieve jointly optimal result because of the loss of useful information. To obtain a better clustering result, in this paper, we propose a joint model to simultaneously compute the optimal real matrix and binary matrix. The existing joint model adopts an orthonormal real matrix to approximate the orthogonal but nonorthonormal cluster indicator matrix. It is noted that only in a very special case (i.e., all clusters have the same number of samples), the cluster indicator matrix is an orthonormal matrix multiplied by a real number. The error of approximating a nonorthonormal matrix is inevitably large. To overcome the drawback, we propose replacing the nonorthonormal cluster indicator matrix with a scaled cluster indicator matrix which is an orthonormal matrix. Our method is capable of obtaining better performance because it is easy to minimize the difference between two orthonormal matrices. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method (called JSESR).

摘要

谱聚类是一种广泛应用于模式识别和图像分割的重要聚类方法。经典的谱聚类算法由两个独立的阶段组成:1)求解一个松弛的连续优化问题,得到一个实矩阵,然后 2)应用 K-均值或谱旋转将实矩阵(即连续聚类结果)四舍五入到一个称为聚类指示矩阵的二进制矩阵。由于丢失了有用的信息,这种分离方案不能保证获得联合最优结果。为了获得更好的聚类结果,本文提出了一种联合模型,用于同时计算最优的实矩阵和二进制矩阵。现有的联合模型采用一个正交实矩阵来近似正交但不正交的聚类指示矩阵。需要注意的是,只有在一个非常特殊的情况下(即所有聚类的样本数相同),聚类指示矩阵才是一个正交矩阵乘以一个实数。因此,对非正交矩阵进行近似的误差不可避免地很大。为了克服这一缺点,我们提出用一个缩放的聚类指示矩阵来代替非正交聚类指示矩阵,这个矩阵是一个正交矩阵。我们的方法能够获得更好的性能,因为它很容易最小化两个正交矩阵之间的差异。在基准数据集上的实验结果证明了所提出方法(称为 JSESR)的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验