Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada.
Casey Eye Institute, Oregon Health and Science University, Portland, Oregon.
Eur J Neurosci. 2018 Nov;48(9):3062-3081. doi: 10.1111/ejn.14198. Epub 2018 Nov 2.
Electrical synapses in the mammalian central nervous system (CNS) are increasingly recognized as highly complex structures for mediation of neuronal communication, both with respect to their capacity for dynamic short- and long-term modification in efficacy of synaptic transmission and their multimolecular regulatory and structural components. These two characteristics are inextricably linked, such that understanding of mechanisms that contribute to electrical synaptic plasticity requires knowledge of the molecular composition of electrical synapses and the functions of proteins associated with these synapses. Here, we provide evidence that the key component of gap junctions that form the majority of electrical synapses in the mammalian CNS, namely connexin36 (Cx36), directly interacts with the related E3 ubiquitin ligase proteins Ligand of NUMB protein X1 (LNX1) and Ligand of NUMB protein X2 (LNX2). This is based on immunofluorescence colocalization of LNX1 and LNX2 with Cx36-containing gap junctions in adult mouse brain versus lack of such coassociation in LNX null mice, coimmunoprecipitation of LNX proteins with Cx36, and pull-down of Cx36 with the second PDZ domain of LNX1 and LNX2. Furthermore, cotransfection of cultured cells with Cx36 and E3 ubiquitin ligase-competent LNX1 and LNX2 isoforms led to loss of Cx36-containing gap junctions between cells, whereas these junctions persisted following transfection with isoforms of these proteins that lack ligase activity. Our results suggest that a LNX protein mediates ubiquitination of Cx36 at neuronal gap junctions, with consequent Cx36 internalization, and may thereby contribute to intracellular mechanisms that govern the recently identified modifiability of synaptic transmission at electrical synapses.
哺乳动物中枢神经系统 (CNS) 中的电突触正日益被认为是介导神经元通讯的高度复杂结构,无论是在突触传递效率的动态短期和长期修饰方面,还是在其多分子调节和结构成分方面。这两个特征是密不可分的,因此,要理解导致电突触可塑性的机制,就需要了解形成哺乳动物 CNS 中大多数电突触的间隙连接的关键成分,即连接蛋白 36(Cx36),以及与这些突触相关的蛋白质的功能。在这里,我们提供的证据表明,形成哺乳动物 CNS 中大多数电突触的间隙连接的关键成分,即连接蛋白 36(Cx36),直接与相关的 E3 泛素连接酶蛋白 NUMB 蛋白 X1 的配体(LNX1)和 NUMB 蛋白 X2 的配体(LNX2)相互作用。这是基于免疫荧光共定位实验,即在成年小鼠大脑中,LNX1 和 LNX2 与含有 Cx36 的间隙连接共定位,而在 LNX 缺失的小鼠中则不存在这种共定位,LNX 蛋白与 Cx36 的共免疫沉淀,以及 LNX1 和 LNX2 的第二个 PDZ 结构域与 Cx36 的下拉。此外,在培养细胞中转染 Cx36 和具有 E3 泛素连接酶活性的 LNX1 和 LNX2 同工型,会导致细胞间含有 Cx36 的间隙连接丧失,而在用这些蛋白缺乏连接酶活性的同工型转染后,这些连接仍然存在。我们的研究结果表明,一种 LNX 蛋白在神经元间隙连接处介导 Cx36 的泛素化,从而导致 Cx36 的内化,并可能因此有助于控制最近发现的电突触处突触传递可修饰性的细胞内机制。