Ainscough E W, Bingham A G, Brodie A M, Ellis W R, Gray H B, Loehr T M, Plowman J E, Norris G E, Baker E N
Biochemistry. 1987 Jan 13;26(1):71-82. doi: 10.1021/bi00375a011.
Spectroscopic and electrochemical studies, incorporating electronic spectra, electron paramagnetic resonance (EPR) spectra, resonance Raman (RR) spectra, and measurements of the redox potential, have been carried out on the blue copper protein azurin, from Alcaligenes denitrificans. These data are correlated with the refined crystal structure of this azurin and with corresponding data for other blue copper proteins. The electronic spectrum, characterized by an intense (epsilon = 5100 M-1 cm-1) charge-transfer band at 619 nm, the EPR spectral parameters (g perpendicular = 2.059, g parallel of = 2.255, A parallel of = 60 X 10(-4) cm-1), and the resonance Raman spectrum are similar to those obtained from other azurins and from plastocyanins. Both the electronic spectrum and the EPR spectrum are unchanged over the pH range 4-10.5, but major changes occur above pH 12 and below pH 3.5. A small reversible change occurs at pH approximately 11.4. In the RR spectrum the Cu-S stretching mode is shown to contribute to all of the five principal RR peaks. Deuterium substitution produces shifts in at least seven of the peaks; these shifts may be attributable, at least in part, to the NH...S hydrogen bond to the copper-ligated Cys-112. Measurements of the redox potential, using spectroelectrochemical methods, over the temperature range 4.8-40.0 degrees C, give values for delta H0' and delta S0' of -55.6 kJ mol-1 and -97.0 J K-1 mol-1, respectively. The redox potential of A. denitrificans azurin at pH 7.0, Eo', is 276 mV. These data are interpreted in terms of a copper site, in azurin, comprising three strong bonds, in an approximately trigonal plane, from Cys-112, His-46, and His-117 and much longer axial approaches from Met-121 and the peptide carbonyl oxygen of Gly-45. Spectral differences within the azurin family and between azurin and plastocyanin are attributed to differences in the strengths of these axial interactions. Likewise, the distinctly lower Eo values for azurins, as compared with plastocyanins, are related to the more copper(II)-like site in azurin [with a weaker Cu-S(Met) interaction and a Cu-O interaction not found in plastocyanin]. On the other hand, the relative constancy of the EPR parameters between azurin and plastocyanin suggests they are not strongly influenced by weakly interacting axial groups.
对来自反硝化产碱菌的蓝铜蛋白天青蛋白进行了光谱和电化学研究,包括电子光谱、电子顺磁共振(EPR)光谱、共振拉曼(RR)光谱以及氧化还原电位的测量。这些数据与该天青蛋白的精细晶体结构以及其他蓝铜蛋白的相应数据相关联。其电子光谱的特征是在619 nm处有一个强吸收峰(ε = 5100 M-1 cm-1)的电荷转移带,EPR光谱参数(g垂直 = 2.059,g平行 = 2.255,A平行 = 60×10(-4) cm-1),并且共振拉曼光谱与从其他天青蛋白和质体蓝素获得的光谱相似。电子光谱和EPR光谱在pH值4 - 10.5范围内均保持不变,但在pH值高于12和低于3.5时会发生重大变化。在pH值约为11.4时会出现一个小的可逆变化。在RR光谱中,Cu-S伸缩模式对所有五个主要RR峰都有贡献。氘取代使至少七个峰发生位移;这些位移至少部分可归因于与铜配位的半胱氨酸-112形成的NH...S氢键。使用光谱电化学方法在4.8 - 40.0℃温度范围内测量氧化还原电位,得到ΔH0'和ΔS0'的值分别为 -55.6 kJ mol-1和 -97.0 J K-1 mol-1。反硝化产碱菌天青蛋白在pH 7.0时的氧化还原电位Eo'为276 mV。这些数据表明天青蛋白中的铜位点由半胱氨酸-112、组氨酸-46和组氨酸-117在近似三角平面内形成的三个强键以及来自甲硫氨酸-12仁甘氨酸-45肽羰基氧的长得多的轴向连接组成。天青蛋白家族内部以及天青蛋白和质体蓝素之间的光谱差异归因于这些轴向相互作用强度的差异。同样,与质体蓝素相比,天青蛋白明显较低的Eo值与天青蛋白中更类似铜(II)的位点有关[具有较弱的Cu-S(甲硫氨酸)相互作用和质体蓝素中不存在的Cu-O相互作用]。另一方面,天青蛋白和质体蓝素之间EPR参数的相对稳定性表明它们不受弱相互作用轴向基团的强烈影响。