介观受限细菌纤维素离聚物中离子液体动力学和扩散的 NMR 弛豫探测。
NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels.
机构信息
Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, Bonn 53115, Germany.
出版信息
J Chem Phys. 2018 May 21;148(19):193845. doi: 10.1063/1.5016337.
Bacterial cellulose ionogels (BCIGs) represent a new class of material comprising a significant content of entrapped ionic liquid (IL) within a porous network formed from crystalline cellulose microfibrils. BCIGs suggest unique opportunities in separations, optically active materials, solid electrolytes, and drug delivery due to the fact that they can contain as much as 99% of an IL phase by weight, coupled with an inherent flexibility, high optical transparency, and the ability to control ionogel cross-sectional shape and size. To allow for the tailoring of BCIGs for a multitude of applications, it is necessary to better understand the underlying principles of the mesoscopic confinement within these ionogels. Toward this, we present a study of the structural, relaxation, and diffusional properties of the ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][TfN]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpy][TfN]), using H and F NMR T relaxation times, rotational correlation times, and diffusion ordered spectroscopy (DOSY) diffusion coefficients, accompanied by molecular dynamics (MD) simulations. We observed that the cation methyl groups in both ILs were primary points of interaction with the cellulose chains and, while the pore size in cellulose is rather large, [emim] diffusion was slowed by ∼2-fold, whereas [TfN] diffusion was unencumbered by incorporation in the ionogel. While MD simulations of [bmpy][TfN] confinement at the interface showed a diffusion coefficient decrease roughly 3-fold compared to the bulk liquid, DOSY measurements did not reveal any significant changes in diffusion. This suggests that the [bmpy][TfN] alkyl chains dominate diffusion through formation of apolar domains. This is in contrast to [emim][TfN] where delocalized charge appears to preclude apolar domain formation, allowing interfacial effects to be manifested at a longer range in [emim][TfN].
细菌纤维素离子凝胶 (BCIG) 代表了一类新材料,其包含大量的离子液体 (IL) 被包埋在由结晶纤维素微纤维形成的多孔网络中。BCIG 由于其可以包含高达 99%的 IL 相(按重量计),并且具有固有的灵活性、高光学透明度和控制离子凝胶横截面形状和尺寸的能力,因此在分离、光学活性材料、固体电解质和药物输送方面具有独特的机会。为了能够针对多种应用对 BCIG 进行定制,有必要更好地了解这些离子凝胶中微观限制的基本原理。为此,我们研究了 ILs(1-乙基-3-甲基咪唑双(三氟甲基磺酰基)亚胺 ([emim][TfN]) 和 1-丁基-1-甲基吡咯烷双(三氟甲基磺酰基)亚胺 ([bmpy][TfN]) 的结构、弛豫和扩散性质,使用 H 和 F NMR T 弛豫时间、旋转相关时间和扩散有序光谱 (DOSY) 扩散系数,以及分子动力学 (MD) 模拟。我们观察到,两种 IL 中的阳离子甲基基团是与纤维素链相互作用的主要点,尽管纤维素中的孔径相当大,但 [emim] 的扩散速度减慢了约 2 倍,而 [TfN] 的扩散则不受离子凝胶中结合的影响。尽管 MD 模拟表明 [bmpy][TfN] 在界面处的限制扩散系数比本体液体降低了约 3 倍,但 DOSY 测量并未显示出扩散有任何显著变化。这表明 [bmpy][TfN] 烷基链通过形成非极性域主导扩散。这与 [emim][TfN] 形成对比,在 [emim][TfN] 中,离域电荷似乎阻止了非极性域的形成,使得界面效应在更长的范围内在 [emim][TfN] 中表现出来。