de Poulpiquet Anne, Goudeau Bertrand, Garrigue Patrick, Sojic Neso, Arbault Stéphane, Doneux Thomas, Bouffier Laurent
Univ. Bordeaux , CNRS , Bordeaux INP , ISM , UMR 5255 , F-33400 Talence , France . Email:
CHANI , Faculté des Sciences , Université libre de Bruxelles (ULB) , CP 255 , B-1050 Bruxelles , Belgium . Email:
Chem Sci. 2018 Jul 16;9(32):6622-6628. doi: 10.1039/c8sc02011f. eCollection 2018 Aug 28.
The coupling between electrochemistry and fluorescence confocal laser scanning microscopy (FCLSM) allows deciphering the electrochemical and/or redox reactivity of electroactive fluorophores. This is demonstrated with phenoxazine electrofluorogenic species frequently used in bioassays by mapping the variation of fluorescence intensity with respect to the distance from the electrode. The electrochemical conversion of resorufin dye (RF) to non-fluorescent dihydroresorufin (DH) leads to a sharp decrease of the fluorescence signal in the vicinity of the electrode. In contrast, the direct reduction of resazurin (RZ) to DH leads to an unexpected maximum fluorescence intensity localized further away from the surface. This observation indicates that the initial electron transfer (heterogeneous) is followed by a chemical comproportionation step (homogeneous), leading to the formation of RF within the diffusion layer with a characteristic concentration profile. Therefore, FCLSM affords a direct way to monitor such chemical reactivity in space and to decipher a new redox pathway that cannot be resolved solely by electrochemical means.
电化学与荧光共聚焦激光扫描显微镜(FCLSM)之间的耦合作用使得能够解读电活性荧光团的电化学和/或氧化还原反应活性。通过绘制荧光强度相对于距电极距离的变化图,这一点在生物测定中常用的吩恶嗪电致荧光物种上得到了证明。试卤灵染料(RF)电化学转化为非荧光二氢试卤灵(DH)会导致电极附近荧光信号急剧下降。相比之下,刃天青(RZ)直接还原为DH会导致在距表面更远的位置出现意外的最大荧光强度。这一观察结果表明,初始电子转移(异相)之后是化学归中步骤(均相),导致在扩散层内形成具有特征浓度分布的RF。因此,FCLSM提供了一种直接的方法来监测空间中的这种化学反应活性,并解读一种仅通过电化学手段无法解析的新的氧化还原途径。