Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warszawa 02-668, Poland.
Phys Chem Chem Phys. 2018 Nov 7;20(41):26221-26240. doi: 10.1039/c8cp03919d. Epub 2018 Oct 15.
We report on spectroscopic studies of hot and ultracold RbSr molecules, and combine the results in an analysis that allows us to fit a potential energy curve (PEC) for the X(1)Σ ground state bridging the short-to-long-range domains. The ultracold RbSr molecules are created in a μK sample of Rb and Sr atoms and probed by two-colour photoassociation spectroscopy. The data yield the long-range dispersion coefficients C and C, along with the total number of supported bound levels. The hot RbSr molecules are created in a 1000 K gas mixture of Rb and Sr in a heat-pipe oven and probed by thermoluminescence and laser-induced fluorescence spectroscopy. We compare the hot molecule data with spectra we simulated using previously published PECs determined by three different ab initio theoretical methods. We identify several band heads corresponding to radiative decay from the B(2)Σ state to the deepest bound levels of X(1)Σ. We determine a mass-scaled high-precision model for X(1)Σ by fitting all data using a single fit procedure. The corresponding PEC is consistent with all data, thus spanning short-to-long internuclear distances and bridging an energy gap of about 75% of the potential well depth, still uncharted by any experiment. We benchmark previous ab initio PECs against our results, and give the PEC fit parameters for both X(1)Σ and B(2)Σ states. As first outcomes of our analysis, we calculate the s-wave scattering properties for all stable isotopic combinations and corroborate the locations of Fano-Feshbach resonances between alkali Rb and closed-shell Sr atoms recently observed [V. Barbéet al., Nat. Phys., 2018, 14, 881]. These results and more generally our strategy should greatly contribute to the generation of ultracold alkali-alkaline-earth dimers, whose applications range from quantum simulation to state-controlled quantum chemistry.
我们报告了关于热和超冷 RbSr 分子的光谱研究,并结合结果进行了分析,从而拟合了连接短程和长程区域的 X(1)Σ 基态的势能曲线(PEC)。超冷 RbSr 分子是在 Rb 和 Sr 原子的μK 样品中创建的,并通过双色光缔合光谱进行探测。数据提供了长程色散系数 C 和 C,以及支持的束缚能级总数。热 RbSr 分子是在热管道炉中由 Rb 和 Sr 的 1000 K 气体混合物创建的,并通过热致发光和激光诱导荧光光谱进行探测。我们将热分子数据与我们使用先前发表的通过三种不同从头算理论方法确定的 PEC 模拟的光谱进行了比较。我们确定了几个对应于 B(2)Σ 态到 X(1)Σ 最深束缚能级的辐射衰减的带头。我们通过使用单一拟合程序拟合所有数据,确定了一个质量缩放的高精度 X(1)Σ 模型。相应的 PEC 与所有数据一致,从而跨越了短程和长程核间距离,并弥合了约 75%的势能阱深度的能量间隙,这仍然是任何实验都没有探索过的。我们将以前的从头算 PEC 与我们的结果进行了基准测试,并给出了 X(1)Σ 和 B(2)Σ 态的 PEC 拟合参数。作为我们分析的第一个结果,我们计算了所有稳定同位素组合的 s 波散射性质,并证实了最近观察到的碱金属 Rb 和闭壳层 Sr 原子之间的 Fano-Feshbach 共振的位置[V. Barbé 等人,自然物理,2018 年,14 卷,881 页]。这些结果以及更普遍的我们的策略应该极大地促进超冷碱-碱土二聚体的产生,其应用范围从量子模拟到状态控制的量子化学。