College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
Dalton Trans. 2018 Oct 30;47(42):15197-15205. doi: 10.1039/c8dt03506g.
Two dinuclear dysprosium complexes of formulae [Dy2(L1)2(NO3)2(MeOH)2]·2MeOH (1) and Dy2(L2)2(NO3)2(MeOH)2 (2), (H2L1 = 4-chloro-2-(((2-hydroxy-3-methoxybenzyl)imino)methyl)phenol, H2L2 = 2-(((2-hydroxybenzylidene)amino)methyl)-6-methoxyphenol) have been synthesized under solvothermal conditions. The two ligands differ in the substituents at the phenol moieties of the ligands. The purposeful exclusion of the functional group -Cl at the phenol backbone significantly changed the geometries of the metal centers, as evidenced by the X-ray crystallographic analysis. In complex 1, two DyIII ions are in D2d local symmetry, while the DyIII ions of 2 are in D4d local symmetry. Consequently, these two complexes demonstrate distinct magnetic properties. Complexes 1 and 2 both exhibit SMM behavior with energy barriers of 51.97 K for 1 and 87.16 K for 2 under a zero direct-current field. Complete-active-space self-consistent field (CASSCF) calculations were performed on the two Dy2 complexes to rationalize the remarkable observed discrepancy in their magnetic behavior. Theoretical calculations reveal that the angle θ between the magnetic axis and the vector connecting two dysprosium(iii) ions is the vital factor for the energy barriers of SMMs. The smaller θ angle of 2 renders it as an SMM with a higher energy barrier. This work demonstrates that tuning the functional groups on the bridging ligands is an effective strategy in modulating the energy barriers of SMMs.
合成、结构和磁性研究:具有不同取代基的双核镝配合物
在溶剂热条件下合成了两个双核镝配合物[Dy2(L1)2(NO3)2(MeOH)2]·2MeOH(1)和Dy2(L2)2(NO3)2(MeOH)2(2),(H2L1=4-氯-2-(((2-羟基-3-甲氧基苄基)亚氨基)甲基)苯酚,H2L2=2-(((2-羟基苯亚甲基)氨基)甲基)-6-甲氧基苯酚)。两个配体在配体的酚部分的取代基不同。由于 X 射线晶体学分析表明,有意排除酚骨架上的功能团-Cl 显著改变了金属中心的几何形状。在配合物 1 中,两个 DyIII 离子处于 D2d 局部对称,而 2 的 DyIII 离子处于 D4d 局部对称。因此,这两个配合物表现出不同的磁性。配合物 1 和 2 均表现出 SMM 行为,在零直流场下,1 的能垒为 51.97 K,2 的能垒为 87.16 K。对两个 Dy2 配合物进行了完全活性空间自洽场(CASSCF)计算,以解释其磁行为中明显的差异。理论计算表明,磁轴与连接两个镝(III)离子的向量之间的角度θ是 SMM 能垒的关键因素。2 的较小θ角使其成为具有较高能垒的 SMM。这项工作表明,调节桥连配体上的功能团是调节 SMM 能垒的有效策略。