Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris-Sud, Université Paris-Saclay, Rue du doyen Georges Poitou, Orsay, 91405, France.
CNRS, Orsay, 91405, France.
Chemistry. 2019 Jan 14;25(3):835-844. doi: 10.1002/chem.201804681. Epub 2019 Jan 2.
A comprehensive mechanistic study by means of complementary experimental and computational approaches of the exo-cyclohydroamination of primary aminoalkenes mediated by the recently reported β-diketiminatoiron(II) complex B is presented. Kinetic analysis of the cyclisation of 2,2-diphenylpent-4-en-1-amine (1 a) catalysed by B revealed a first-order dependence of the rate on both aminoalkene and catalyst concentrations and a primary kinetic isotope effect (KIE) (k /k ) of 2.7 (90 °C). Eyring analysis afforded ΔH =22.2 kcal mol , ΔS =-13.4 cal mol K . Plausible mechanistic pathways for competitive avenues of direct intramolecular hydroamination and oxidative amination have been scrutinised computationally. A kinetically challenging proton-assisted concerted N-C/C-H bond-forming non-insertive pathway is seen not to be accessible in the presence of a distinctly faster σ-insertive pathway. This operative pathway involves 1) rapid and reversible syn-migratory 1,2-insertion of the alkene into the Fe-N σ bond at the monomer {N^N}Fe amido compound; 2) turnover-limiting Fe-C σ bond aminolysis at the thus generated transient {N^N}Fe alkyl intermediate and 3) regeneration of the catalytically competent {N^N}Fe amido complex, which favours its dimer, likely representing the catalyst resting state, through rapid cycloamine displacement by substrate. The collectively derived mechanistic picture is consonant with all empirical data obtained from stoichiometric, catalytic and kinetics experiments.
本文通过互补的实验和计算方法,对最近报道的β-二酮亚胺铁(II)配合物 B 介导的伯氨基烯的外环氢环化胺化反应进行了全面的机理研究。B 催化 2,2-二苯基戊-4-烯-1-胺(1a)环化的动力学分析表明,反应速率对氨基烯烃和催化剂浓度均呈一级依赖关系,且初级动力学同位素效应(k /k )为 2.7(90°C)。Eyring 分析得出ΔH =22.2 kcal mol ,ΔS =-13.4 cal mol K 。对竞争性的直接分子内氢环化和氧化胺化途径的合理机理途径进行了计算研究。在存在明显更快的σ-插入途径的情况下,动力学上具有挑战性的质子辅助协同 N-C/C-H 键形成非插入途径是不可行的。这种操作途径包括:1)烯烃在单体{ N^N}Fe 酰胺化合物中快速可逆的顺迁移 1,2-插入到 Fe-N σ 键;2)由此生成的瞬态{ N^N}Fe 烷基中间体中有限速的 Fe-C σ 键氨解;3)通过快速的环胺取代底物,再生催化有效{ N^N}Fe 酰胺配合物,这有利于其二聚体,可能代表催化剂的静止状态。所得到的综合机理图景与从化学计量学、催化和动力学实验中获得的所有实验数据一致。