Department of Mechanical and Process Engineering , Eidgenössische Technische Hochschule (ETH) Zürich , Tannenstrasse 3 , Zurich CH-8092 , Switzerland.
Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77Cheongam-ro, Nam-gu , Pohang , Gyeongbuk 790-784 , Republic of Korea.
Nano Lett. 2018 Nov 14;18(11):6679-6685. doi: 10.1021/acs.nanolett.8b01891. Epub 2018 Oct 15.
Osmosis plays a central role in many chemical separation processes. Among various biological and artificial channels, carbon nanotubes (CNTs) stand out due to their exceptional water transport efficiency and variability of pore-size, down to molecular dimensions, thereby approaching ideal semipermeability. We report osmotically driven water and salt transport across a membrane of vertically aligned CNTs in a titania matrix whose surface is functionalized with a self-assembled monolayer of octadecylphosphonic acid. The increased steric hindrance and hydrophobicity at the pore entrance of CNTs improved salt rejection while maintaining enhanced osmotic water transport, thanks to an atomically smooth surface of the nanotubes. In addition to the experimental demonstration of osmosis, we observed a net negative osmotic water flow at lower salt concentration gradient and non-Fickian behavior of the reverse salt flux. This observation is attributable to the interface-driven fluidic phenomenon known as diffusio-osmosis that drives water flow in the direction opposite to osmotic flow. The ion-CNT interactions are responsible for the simultaneous occurrence of the two osmotic transport mechanisms and the salt-specific osmotic transport characteristics.
渗透作用在许多化学分离过程中起着核心作用。在各种生物和人工通道中,碳纳米管(CNT)因其出色的水传输效率和孔径可变性而脱颖而出,孔径可小至分子尺寸,从而接近理想的半透性。我们报告了在 TiO2 基质中垂直排列的 CNT 膜中,通过十八烷基膦酸自组装单层功能化的表面,在渗透压作用下水和盐的传输。由于纳米管具有原子级光滑的表面,因此在 CNT 孔入口处增加的空间位阻和疏水性提高了盐的截留率,同时保持了增强的渗透水传输。除了对渗透作用的实验演示外,我们还观察到在较低盐浓度梯度下净负渗透压水流和反向盐通量的非菲克行为。这种观察归因于界面驱动的流体现象,称为扩散渗透,它驱使水流与渗透压流相反的方向流动。离子-CNT 相互作用是同时发生两种渗透传输机制和盐特异性渗透传输特性的原因。