Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States.
Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States.
Nano Lett. 2018 Nov 14;18(11):7111-7117. doi: 10.1021/acs.nanolett.8b03132. Epub 2018 Oct 22.
Polyelectrolyte complex micelles (PCMs), nanoparticles formed by electrostatic self-assembly of charged polymers with charged-neutral hydrophilic block copolymers, offer a potential solution to the challenging problem of delivering therapeutic nucleic acids into cells and organisms. Promising results have been reported in vitro and in animal models but basic structure-property relationships are largely lacking, and some reports have suggested that double-stranded nucleic acids cannot form PCMs due to their high bending rigidity. This letter reports a study of PCMs formed by DNA oligonucleotides of varied length and hybridization state and poly(l)lysine-poly(ethylene glycol) block copolymers with varying block lengths. We employ a multimodal characterization strategy combining small-angle X-ray scattering (SAXS), multiangle light scattering (MALS), and cryo-electron microscopy (cryo-TEM) to simultaneously probe the morphology and internal structure of the micelles. Over a wide range of parameters, we find that nanoparticle shape is controlled primarily by the hybridization state of the oligonucleotides with single-stranded oligonucleotides forming spheroidal micelles and double-stranded oligonucleotides forming wormlike micelles. The length of the charged block controls the radius of the nanoparticle, while oligonucleotide length appears to have little impact on either size or shape. At smaller length scales, we observe parallel packing of DNA helices inside the double-stranded nanoparticles, consistent with results from condensed genomic DNA. We also describe salt- and thermal-annealing protocols for preparing PCMs with high repeatability and low polydispersity. Together, these results provide a capability to rationally design PCMs with desired sizes and shapes that should greatly assist development of this promising delivery technology.
聚电解质复合胶束(PCM)是由带电荷的聚合物与带有带电中性亲水嵌段共聚物静电自组装形成的纳米颗粒,为将治疗性核酸递送到细胞和生物体中这一具有挑战性的问题提供了一种潜在的解决方案。在体外和动物模型中已经报道了有前景的结果,但基本的结构-性能关系在很大程度上还缺乏,并且一些报告表明双链核酸由于其高弯曲刚性而不能形成 PCM。这封信报告了对不同长度和杂交状态的 DNA 寡核苷酸与不同长度嵌段的聚(L)赖氨酸-聚(乙二醇)嵌段共聚物形成的 PCM 的研究。我们采用了一种多模态表征策略,结合小角 X 射线散射(SAXS)、多角度光散射(MALS)和冷冻电子显微镜(cryo-TEM),同时探测胶束的形态和内部结构。在广泛的参数范围内,我们发现纳米颗粒的形状主要由寡核苷酸的杂交状态控制,单链寡核苷酸形成球状胶束,双链寡核苷酸形成蠕虫状胶束。带电嵌段的长度控制纳米颗粒的半径,而寡核苷酸的长度似乎对尺寸或形状都没有影响。在较小的长度尺度上,我们观察到双链纳米颗粒内 DNA 螺旋的平行堆积,与凝聚基因组 DNA 的结果一致。我们还描述了用于制备具有高重复性和低多分散性的 PCM 的盐和热退火方案。总之,这些结果提供了一种能够合理设计具有所需尺寸和形状的 PCM 的能力,这应该极大地有助于这种有前途的递药技术的发展。