Department of Mechanical Engineering, Clemson University, Clemson, SC, USA.
Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Taiwan.
Electrophoresis. 2019 May;40(10):1387-1394. doi: 10.1002/elps.201800315. Epub 2018 Nov 6.
Insulator-based dielectrophoresis has to date been almost entirely restricted to Newtonian fluids despite the fact that many of the chemical and biological fluids exhibit non-Newtonian characteristics. We present herein an experimental study of the fluid rheological effects on the electroosmotic flow of four types of polymer solutions, i.e., 2000 ppm xanthan gum (XG), 5% polyvinylpyrrolidone (PVP), 3000 ppm polyethylene oxide (PEO), and 200 ppm polyacrylamide (PAA) solutions, through a constriction microchannel under DC electric fields of up to 400 V/cm. We find using particle streakline imaging that the fluid elasticity does not change significantly the electroosmotic flow pattern of weakly shear-thinning PVP and PEO solutions from that of a Newtonian solution. In contrast, the fluid shear-thinning causes multiple pairs of flow circulations in the weakly elastic XG solution, leading to a central jet with a significantly enhanced speed from before to after the channel constriction. These flow vortices are, however, suppressed in the strongly viscoelastic and shear-thinning PAA solution.
基于绝缘子的介电泳迄今为止几乎完全局限于牛顿流体,尽管许多化学和生物流体表现出非牛顿特性。本文通过直流电场在微通道中对四种聚合物溶液(即 2000ppm 黄原胶(XG)、5%聚乙烯吡咯烷酮(PVP)、3000ppm 聚氧化乙烯(PEO)和 200ppm 聚丙烯酰胺(PAA)溶液)的流体力 学效应进行了实验研究,电场强度高达 400V/cm。我们发现,使用粒子条纹成像,流体弹性不会显著改变弱剪切稀化的 PVP 和 PEO 溶液的电渗流动模式与牛顿流体的流动模式。相比之下,流体的剪切稀化会导致在弱弹性的 XG 溶液中产生多对流动循环,从而导致在通道收缩前后,中央射流的速度显著增加。然而,这些流动漩涡在强粘弹性和剪切稀化的 PAA 溶液中被抑制。