Suppr超能文献

基于稀疏贝叶斯估计的双嵌套二维角度估计。

Two-Dimensional Angle Estimation of Two-Parallel Nested Arrays Based on Sparse Bayesian Estimation.

机构信息

Electronic Countermeasures College, National University of Defense Technology, Hefei 230037, China.

出版信息

Sensors (Basel). 2018 Oct 19;18(10):3553. doi: 10.3390/s18103553.

Abstract

To increase the number of estimable signal sources, two-parallel nested arrays are proposed, which consist of two subarrays with sensors, and can estimate the two-dimensional (2-D) direction of arrival (DOA) of signal sources. To solve the problem of direction finding with two-parallel nested arrays, a 2-D DOA estimation algorithm based on sparse Bayesian estimation is proposed. Through a vectorization matrix, smoothing reconstruction matrix and singular value decomposition (SVD), the algorithm reduces the size of the sparse dictionary and data noise. A sparse Bayesian learning algorithm is used to estimate one dimension angle. By a joint covariance matrix, another dimension angle is estimated, and the estimated angles from two dimensions can be automatically paired. The simulation results show that the number of DOA signals that can be estimated by the proposed two-parallel nested arrays is much larger than the number of sensors. The proposed two-dimensional DOA estimation algorithm has excellent estimation performance.

摘要

为了增加可估计信号源的数量,提出了两平行嵌套阵列,它由两个带有传感器的子阵组成,可以估计信号源的二维(2-D)到达方向(DOA)。为了解决两平行嵌套阵列的测向问题,提出了一种基于稀疏贝叶斯估计的 2-D DOA 估计算法。通过一个向量化矩阵、平滑重建矩阵和奇异值分解(SVD),该算法减少了稀疏字典和数据噪声的大小。稀疏贝叶斯学习算法用于估计一维角度。通过联合协方差矩阵,估计另一个维度的角度,并且可以自动对两个维度的估计角度进行配对。仿真结果表明,所提出的两平行嵌套阵列可估计的 DOA 信号数量远远大于传感器的数量。所提出的二维 DOA 估计算法具有优异的估计性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3d/6210150/c4042268fcfa/sensors-18-03553-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验