Suppr超能文献

当盐负荷试验结果不明确时的原发性醛固酮增多症预测模型。

A prediction model for primary aldosteronism when the salt loading test is inconclusive.

作者信息

Velema Marieke S, Linssen Evie J M, Hermus Ad R M M, Groenewoud Hans J M M, van der Wilt Gert-Jan, van Herwaarden Antonius E, Lenders Jacques W M, Timmers Henri J L M, Deinum Jaap

机构信息

Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.

Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands.

出版信息

Endocr Connect. 2018 Dec;7(12):1308-1314. doi: 10.1530/EC-18-0358.

Abstract

OBJECTIVE

To develop a prediction model to confirm or exclude primary aldosteronism (PA) in patients with an inconclusive salt loading test (SLT).

CONTEXT

Diagnosis in patients with a suspicion of PA can be confirmed using an SLT. In case of inconclusive test results the decision about how to manage the patient is usually based on contextual clinical data.

DESIGN

We included a retrospective cohort of 276 patients in the final analysis.

METHODS

All patients underwent an SLT between 2005 and 2016 in our university medical center. The SLT was inconclusive (post-infusion aldosterone levels 140-280 pmol/L) in 115 patients. An expert panel then used contextual clinical data to diagnose PA in 45 of them. Together with 101 patients with a positive SLT this resulted in a total of 146 patients with PA. A total of 11 variables were used in a multivariable logistic regression analysis. We assessed internal validity by bootstrapping techniques.

RESULTS

The following variables were independently associated with PA: more intense potassium supplementation, lower plasma potassium concentration, lower plasma renin concentration before SLT and higher plasma aldosterone concentration after SLT. The resulting prediction model had a sensitivity of 84.4% and a specificity of 94.3% in patients with an inconclusive SLT. The positive and negative predictive values were 90.5 and 90.4%, respectively.

CONCLUSIONS

We developed a prediction model for the diagnosis of PA in patients with an inconclusive SLT that results in a diagnosis that was in high agreement with that of an expert panel.

摘要

目的

建立一种预测模型,以确定或排除盐负荷试验(SLT)结果不明确的患者是否患有原发性醛固酮增多症(PA)。

背景

疑似PA的患者可通过SLT确诊。若试验结果不明确,通常根据相关临床数据来决定如何处理患者。

设计

我们纳入了276例患者的回顾性队列进行最终分析。

方法

2005年至2016年期间,所有患者均在我校医学中心接受了SLT。115例患者的SLT结果不明确(输注后醛固酮水平为140 - 280 pmol/L)。然后,一个专家小组利用相关临床数据对其中45例患者诊断为PA。加上101例SLT结果为阳性的患者,共有146例PA患者。在多变量逻辑回归分析中总共使用了11个变量。我们通过自抽样技术评估内部有效性。

结果

以下变量与PA独立相关:更强化的钾补充、更低的血浆钾浓度、SLT前更低的血浆肾素浓度以及SLT后更高的血浆醛固酮浓度。在SLT结果不明确的患者中,所得预测模型的灵敏度为84.4%,特异度为94.3%。阳性预测值和阴性预测值分别为90.5%和90.4%。

结论

我们建立了一种用于诊断SLT结果不明确的PA患者的预测模型,该模型所得诊断结果与专家小组的诊断结果高度一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266d/6240140/66e7a5db540d/EC-18-0358fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验