Section of Cellular Biochemistry.
Department of Biochemistry and Cellular Biology.
J Neurosci. 2018 Nov 21;38(47):10220-10235. doi: 10.1523/JNEUROSCI.1590-18.2018. Epub 2018 Oct 24.
Synaptic AMPAR expression controls the strength of excitatory synaptic transmission and plasticity. An excess of synaptic AMPARs leads to epilepsy in response to seizure-inducible stimulation. The appropriate regulation of AMPARs plays a crucial role in the maintenance of the excitatory/inhibitory synaptic balance; however, the detailed mechanisms underlying epilepsy remain unclear. Our previous studies have revealed that a key modification of AMPAR trafficking to and from postsynaptic membranes is the reversible, posttranslational -palmitoylation at the C-termini of receptors. To clarify the role of palmitoylation-dependent regulation of AMPARs , we generated GluA1 palmitoylation-deficient (Cys811 to Ser substitution) knock-in mice. These mutant male mice showed elevated seizure susceptibility and seizure-induced neuronal activity without impairments in synaptic transmission, gross brain structure, or behavior at the basal level. Disruption of the palmitoylation site was accompanied by upregulated GluA1 phosphorylation at Ser831, but not at Ser845, in the hippocampus and increased GluA1 protein expression in the cortex. Furthermore, GluA1 palmitoylation suppressed excessive spine enlargement above a certain size after LTP. Our findings indicate that an abnormality in GluA1 palmitoylation can lead to hyperexcitability in the cerebrum, which negatively affects the maintenance of network stability, resulting in epileptic seizures. AMPARs predominantly mediate excitatory synaptic transmission. AMPARs are regulated in a posttranslational, palmitoylation-dependent manner in excitatory synapses of the mammalian brain. Reversible palmitoylation dynamically controls synaptic expression and intracellular trafficking of the receptors. Here, we generated GluA1 palmitoylation-deficient knock-in mice to clarify the role of AMPAR palmitoylation We showed that an abnormality in GluA1 palmitoylation led to hyperexcitability, resulting in epileptic seizure. This is the first identification of a specific palmitoylated protein critical for the seizure-suppressing process. Our data also provide insight into how predicted receptors such as AMPARs can effectively preserve network stability in the brain. Furthermore, these findings help to define novel key targets for developing anti-epileptic drugs.
突触 AMPAR 表达控制兴奋性突触传递和可塑性的强度。突触 AMPAR 过多会导致癫痫发作对诱导性刺激的反应。AMPAR 的适当调节在维持兴奋性/抑制性突触平衡中起着至关重要的作用;然而,癫痫的详细机制仍不清楚。我们之前的研究表明,AMPAR 向和从突触后膜的运输的关键修饰是受体 C 端的可逆、翻译后棕榈酰化。为了阐明 AMPAR 的棕榈酰化依赖性调节的作用,我们生成了 GluA1 棕榈酰化缺陷(Cys811 到 Ser 取代)敲入小鼠。这些突变雄性小鼠表现出更高的癫痫易感性和癫痫诱导的神经元活性,而突触传递、大脑总体结构或基础水平的行为没有受损。棕榈酰化位点的破坏伴随着海马中 GluA1 的 Ser831 磷酸化上调,但 Ser845 没有上调,以及皮质中 GluA1 蛋白表达增加。此外,GluA1 棕榈酰化抑制 LTP 后超过一定大小的过度棘突扩大。我们的发现表明,GluA1 棕榈酰化异常可导致大脑过度兴奋,这对网络稳定性的维持产生负面影响,导致癫痫发作。AMPAR 主要介导兴奋性突触传递。在哺乳动物大脑的兴奋性突触中,AMPAR 以翻译后棕榈酰化依赖的方式进行调节。可逆的棕榈酰化动态控制受体的突触表达和细胞内运输。在这里,我们生成了 GluA1 棕榈酰化缺陷敲入小鼠,以阐明 AMPAR 棕榈酰化的作用。我们表明,GluA1 棕榈酰化异常导致过度兴奋,导致癫痫发作。这是首次鉴定出对抑制性癫痫发作过程至关重要的特定棕榈酰化蛋白。我们的数据还提供了对预测的 AMPAR 等受体如何有效维持大脑网络稳定性的深入了解。此外,这些发现有助于确定开发抗癫痫药物的新关键靶点。