Suppr超能文献

一种用于傅里叶分解自由呼吸肺部 H MRI 通气测量的框架。

A framework for Fourier-decomposition free-breathing pulmonary H MRI ventilation measurements.

机构信息

Robarts Research Institute, Western University, London, Ontario, Canada.

Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.

出版信息

Magn Reson Med. 2019 Mar;81(3):2135-2146. doi: 10.1002/mrm.27527. Epub 2018 Oct 26.

Abstract

PURPOSE

To develop a rapid Fourier decomposition (FD) free-breathing pulmonary H MRI (FDMRI) image processing and biomarker pipeline for research use.

METHODS

We acquired MRI in 20 asthmatic subjects using a balanced steady-state free precession (bSSFP) sequence optimized for ventilation imaging. 2D H MRI series were segmented by enforcing the spatial similarity between adjacent images and the right-to-left lung volume-ratio. The segmented lung series were co-registered using a coarse-to-fine deformable registration framework that used dual optimization techniques. All pairwise registrations were implemented in parallel and FD was performed to generate 2D ventilation-weighted maps and ventilation-defect-percent (VDP). Lung segmentation and registration accuracy were evaluated by comparing algorithm and manual lung-masks, deformed manual lung-masks, and fiducials in the moving and fixed images using Dice-similarity-coefficient (DSC), mean-absolute-distance (MAD), and target-registration-error (TRE). The relationship of FD-VDP and He-VDP was evaluated using the Pearson-correlation-coefficient (r) and Bland Altman analysis. Algorithm reproducibility was evaluated using the coefficient-of-variation (CoV) and intra-class-correlation-coefficient (ICC) for segmentation, registration, and FD-VDP components.

RESULTS

For lung segmentation, there was a DSC of 95 ± 1.5% and MAD of 2.3 ± 0.5 mm, and for registration there was a DSC of 97 ± 0.8%, MAD of 1.6 ± 0.4 mm and TRE of 3.6 ± 1.2 mm. Reproducibility for segmentation DSC (CoV/ICC = 0.5%/0.92), registration TRE (CoV/ICC = 0.4%/0.98), and FD-VDP (Cov/ICC = 3.9%/0.97) was high. The pipeline required 10 min/subject. FD-VDP was correlated with He-VDP (r = 0.69, P < 0.001) although there was a bias toward lower FD-VDP (bias = -4.9%).

CONCLUSIONS

We developed and evaluated a pipeline that provides a rapid and precise method for FDMRI ventilation maps.

摘要

目的

开发一种快速傅里叶分解(FD)自由呼吸肺部 H MRI(FDMRI)图像处理和生物标志物管道,用于研究用途。

方法

我们使用针对通气成像进行了优化的平衡稳态自由进动(bSSFP)序列在 20 例哮喘患者中采集 MRI。通过强制相邻图像之间的空间相似性和左右肺容积比来分割 2D H MRI 系列。使用基于双优化技术的粗到精变形配准框架对分割的肺系列进行配准。所有成对的配准都是并行实现的,并进行 FD 以生成 2D 通气加权图和通气缺陷百分比(VDP)。通过比较算法和手动肺掩模、变形手动肺掩模以及移动和固定图像中的标记,使用 Dice 相似系数(DSC)、平均绝对距离(MAD)和目标配准误差(TRE)评估肺分割和配准的准确性。使用 Pearson 相关系数(r)和 Bland Altman 分析评估 FD-VDP 和 He-VDP 之间的关系。使用分割、配准和 FD-VDP 分量的变异系数(CoV)和组内相关系数(ICC)评估算法的可重复性。

结果

对于肺分割,DSC 为 95±1.5%,MAD 为 2.3±0.5mm,对于配准,DSC 为 97±0.8%,MAD 为 1.6±0.4mm,TRE 为 3.6±1.2mm。分割 DSC(CoV/ICC=0.5%/0.92)、配准 TRE(CoV/ICC=0.4%/0.98)和 FD-VDP(CoV/ICC=3.9%/0.97)的可重复性很高。该流水线每个受试者需要 10 分钟。FD-VDP 与 He-VDP 相关(r=0.69,P<0.001),尽管 FD-VDP 存在偏低的趋势(偏差=-4.9%)。

结论

我们开发并评估了一种快速准确的 FDMRI 通气图处理方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验