Suppr超能文献

硅酸锂(Li₂SiO₃)薄膜的力学性能和化学反应活性

Mechanical Properties and Chemical Reactivity of Li SiO Thin Films.

作者信息

Xu Yun, Stetson Caleb, Wood Kevin, Sivonxay Eric, Jiang Chunsheng, Teeter Glenn, Pylypenko Svitlana, Han Sang-Don, Persson Kristin A, Burrell Anthony, Zakutayev Andriy

机构信息

Department of Chemistry , Colorado School of Mines , Golden , Colorado 80401 , United States.

Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.

出版信息

ACS Appl Mater Interfaces. 2018 Nov 7;10(44):38558-38564. doi: 10.1021/acsami.8b10895. Epub 2018 Oct 26.

Abstract

Silicon (Si) is a commonly studied candidate material for next-generation anodes in Li-ion batteries. A native oxide SiO on Si is often inevitable. However, it is not clear if this layer has a positive or negative effect on the battery performance. This understanding is complicated by the lack of knowledge about the physical properties of the SiO lithiation products and by the convolution of chemical and electrochemical effects during the anode lithiation process. In this study, Li SiO thin films as model materials for lithiated SiO were deposited by magnetron sputtering at ambient temperature, with the goal of (1) decoupling chemical reactivity from electrochemical reactivity and (2) evaluating the physical and electrochemical properties of Li SiO . X-ray photoemission spectroscopy analysis of the deposited thin films demonstrate that a composition close to previous experimental reports of lithiated native SiO can be achieved through sputtering. Our density functional theory calculations also confirm that the possible phases formed by lithiating SiO are very close to the measured film compositions. Scanning probe microscopy measurements show that the mechanical properties of the film are strongly dependent on lithium concentration, with a ductile behavior at a higher Li content and a brittle behavior at a lower Li content. The chemical reactivity of the thin films was investigated by measuring the AC impedance evolution, suggesting that Li SiO continuously reacts with the electrolyte, in part because of the high electronic conductivity of the film determined from solid-state impedance measurements. The electrochemical cycling data of the sputter-deposited Li SiO /Si films also suggest that Li SiO is not beneficial in stabilizing the Si anode surface during battery operation, despite its favorable mechanical properties.

摘要

硅(Si)是锂离子电池下一代负极中常用的研究候选材料。硅表面不可避免地会形成原生氧化物SiO。然而,目前尚不清楚这层氧化物对电池性能是有积极影响还是消极影响。由于缺乏对SiO锂化产物物理性质的了解,以及负极锂化过程中化学和电化学效应的相互交织,使得这种理解变得复杂。在本研究中,通过磁控溅射在室温下沉积Li₂SiO₃薄膜作为锂化SiO的模型材料,目的是:(1)将化学反应性与电化学反应性解耦;(2)评估Li₂SiO₃的物理和电化学性质。对沉积薄膜的X射线光电子能谱分析表明,通过溅射可以实现与先前锂化原生SiO实验报告相近的成分。我们的密度泛函理论计算也证实,SiO锂化形成的可能相非常接近测量的薄膜成分。扫描探针显微镜测量表明,薄膜的机械性能强烈依赖于锂浓度,锂含量较高时表现出韧性行为,锂含量较低时表现出脆性行为。通过测量交流阻抗的变化来研究薄膜的化学反应性,结果表明Li₂SiO₃会持续与电解质发生反应,部分原因是根据固态阻抗测量确定的薄膜具有较高的电子电导率。溅射沉积的Li₂SiO₃/Si薄膜的电化学循环数据也表明,尽管Li₂SiO₃具有良好的机械性能,但在电池运行过程中对稳定硅负极表面并无益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验