Suppr超能文献

不对称磁重联X线的取向与稳定性

Orientation and Stability of Asymmetric Magnetic Reconnection X Line.

作者信息

Liu Yi-Hsin, Hesse M, Li T C, Kuznetsova M, Le A

机构信息

Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA.

Department of Physics and Technology, University of Bergen, Bergen, Norway.

出版信息

J Geophys Res Space Phys. 2018 Jun;123(6):4908-4920. doi: 10.1029/2018JA025410. Epub 2018 May 31.

Abstract

The orientation and stability of the reconnection x line in asymmetric geometry is studied using three-dimensional (3-D) particle-in-cell simulations. We initiate reconnection at the center of a large simulation domain to minimize the boundary effect. The resulting x line has sufficient freedom to develop along an optimal orientation, and it remains laminar. Companion 2-D simulations indicate that this x line orientation maximizes the reconnection rate. The divergence of the nongyrotropic pressure tensor breaks the frozen-in condition, consistent with its 2-D counterpart. We then design 3-D simulations with one dimension being short to fix the x line orientation but long enough to allow the growth of the fastest growing oblique tearing modes. This numerical experiment suggests that reconnection tends to radiate secondary oblique tearing modes if it is externally (globally) forced to proceed along an orientation not favored by the local physics. The development of oblique structure easily leads to turbulence inside small periodic systems.

摘要

利用三维粒子模拟研究了不对称几何结构中重联x线的取向和稳定性。我们在一个大模拟域的中心引发重联,以尽量减少边界效应。由此产生的x线有足够的自由度沿最优取向发展,并且保持层流状态。伴随的二维模拟表明,这种x线取向使重联率最大化。非旋转变压力张量的散度打破了冻结条件,这与其二维对应情况一致。然后,我们设计一维较短的三维模拟来固定x线取向,但长度要足够长,以允许最快增长的斜向撕裂模增长。这个数值实验表明,如果重联在外部(全局)被迫沿着局部物理不支持的取向进行,那么它倾向于辐射出二次斜向撕裂模。在小周期系统中,斜向结构的发展很容易导致湍流。

相似文献

1
Orientation and Stability of Asymmetric Magnetic Reconnection X Line.
J Geophys Res Space Phys. 2018 Jun;123(6):4908-4920. doi: 10.1029/2018JA025410. Epub 2018 May 31.
2
Bifurcated structure of the electron diffusion region in three-dimensional magnetic reconnection.
Phys Rev Lett. 2013 Jun 28;110(26):265004. doi: 10.1103/PhysRevLett.110.265004. Epub 2013 Jun 25.
3
Spacecraft Observations of Oblique Electron Beams Breaking the Frozen-In Law During Asymmetric Reconnection.
Phys Rev Lett. 2018 Feb 2;120(5):055101. doi: 10.1103/PhysRevLett.120.055101.
4
Extended Magnetic Reconnection in Kinetic Plasma Turbulence.
Phys Rev Lett. 2023 Aug 25;131(8):085201. doi: 10.1103/PhysRevLett.131.085201.
5
Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.
Phys Rev Lett. 2009 Mar 20;102(11):115003. doi: 10.1103/PhysRevLett.102.115003. Epub 2009 Mar 18.
6
Three-dimensional dynamics of collisionless magnetic reconnection in large-scale pair plasmas.
Phys Rev Lett. 2008 Sep 19;101(12):125001. doi: 10.1103/PhysRevLett.101.125001. Epub 2008 Sep 15.
7
Evolution of anisotropic turbulence in nonlinear magnetic reconnection.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 2):016402. doi: 10.1103/PhysRevE.78.016402. Epub 2008 Jul 11.
8
Turbulent reconnection and its implications.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0144.
9
Strongly localized magnetic reconnection by the super-Alfvénic shear flow.
Phys Plasmas. 2018;25(8). doi: 10.1063/1.5042539. Epub 2018 Aug 2.
10
Topology of turbulence within collisionless plasma reconnection.
Sci Rep. 2023 Oct 31;13(1):18665. doi: 10.1038/s41598-023-45650-x.

引用本文的文献

1
Simulation Models for Exploring Magnetic Reconnection.
Space Sci Rev. 2025;221(6):81. doi: 10.1007/s11214-025-01210-5. Epub 2025 Sep 9.
2
Outstanding Questions and Future Research on Magnetic Reconnection.
Space Sci Rev. 2025;221(1):17. doi: 10.1007/s11214-025-01143-z. Epub 2025 Feb 11.
3
Ohm's Law, the Reconnection Rate, and Energy Conversion in Collisionless Magnetic Reconnection.
Space Sci Rev. 2025;221(1):16. doi: 10.1007/s11214-025-01142-0. Epub 2025 Feb 10.
4
Advanced Methods for Analyzing in-Situ Observations of Magnetic Reconnection.
Space Sci Rev. 2024;220(6):68. doi: 10.1007/s11214-024-01095-w. Epub 2024 Sep 2.
5
On the Collisionless Asymmetric Magnetic Reconnection Rate.
Geophys Res Lett. 2018 Apr 28;45(8):3311-3318. doi: 10.1002/2017GL076460. Epub 2018 Mar 6.

本文引用的文献

1
On the Collisionless Asymmetric Magnetic Reconnection Rate.
Geophys Res Lett. 2018 Apr 28;45(8):3311-3318. doi: 10.1002/2017GL076460. Epub 2018 Mar 6.
3
Why does Steady-State Magnetic Reconnection have a Maximum Local Rate of Order 0.1?
Phys Rev Lett. 2017 Feb 24;118(8):085101. doi: 10.1103/PhysRevLett.118.085101. Epub 2017 Feb 21.
4
Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection.
Phys Rev Lett. 2016 Jun 10;116(23):235102. doi: 10.1103/PhysRevLett.116.235102.
5
Electron-scale measurements of magnetic reconnection in space.
Science. 2016 Jun 3;352(6290):aaf2939. doi: 10.1126/science.aaf2939. Epub 2016 May 12.
6
Bifurcated structure of the electron diffusion region in three-dimensional magnetic reconnection.
Phys Rev Lett. 2013 Jun 28;110(26):265004. doi: 10.1103/PhysRevLett.110.265004. Epub 2013 Jun 25.
7
Extended magnetic reconnection across the dayside magnetopause.
Phys Rev Lett. 2011 Jul 8;107(2):025004. doi: 10.1103/PhysRevLett.107.025004. Epub 2011 Jul 6.
8
A current filamentation mechanism for breaking magnetic field lines during reconnection.
Nature. 2011 Jun 1;474(7350):184-7. doi: 10.1038/nature10091.
9
In situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons.
Phys Rev Lett. 2010 Apr 30;104(17):175003. doi: 10.1103/PhysRevLett.104.175003. Epub 2010 Apr 29.
10
A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind.
Nature. 2006 Jan 12;439(7073):175-8. doi: 10.1038/nature04393.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验