生长停滞特异性基因 6 转移通过增强自分泌信号和旁分泌作用促进骨髓间充质干细胞在低氧和缺血条件下的存活和心脏修复。

Growth arrest-specific gene 6 transfer promotes mesenchymal stem cell survival and cardiac repair under hypoxia and ischemia via enhanced autocrine signaling and paracrine action.

机构信息

Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

出版信息

Arch Biochem Biophys. 2018 Dec 15;660:108-120. doi: 10.1016/j.abb.2018.10.016. Epub 2018 Oct 24.

Abstract

Poor cell viability after transplantation has restricted the therapeutic capacity of mesenchymal stem cells (MSCs) for cardiac dysfunction after myocardial infarction (MI). Growth arrest-specific gene 6 (Gas6) encodes a secreted γ-carboxyglutamic acid (Gla)-containing protein that functions in cell growth, adhesion, chemotaxis, mitogenesis and cell survival. In this study, we genetically modified MSCs with Gas6 and evaluated cell survival, cardiac function, and infarct size in a rat model of MI via intramyocardial delivery. Functional studies demonstrated that Gas6 transfer significantly reduced MSC apoptosis, increased survival of MSCs in vitro and in vivo, and that Gas6-engineered MSCs (MSC)-treated animals had smaller infarct size and showed remarkably functional recovery as compared with control MSCs (MSC)-treated animals. Mechanistically, Gas6 could enhance phosphatidylinositol 3-kinase (PI3K)/Akt signaling and improve hypoxia-inducible factor-1 alpha (HIF-1α)-driven secretion of four major growth factors (VEGF, bFGF, SDF and IGF-1) in MSCs under hypoxia in an Axl-dependent autocrine manner. The paracrine action of MSC was further validated by coculture neonatal rat cardiomyocytes with conditioned medium from hypoxia-treated MSC, as well as by pretreatment cardiomyocytes with the specific receptor inhibitors of VEGF, bFGF, SDF and IGF-1. Collectively, our data suggest that Gas6 may advance the efficacy of MSC therapy for post-infarcted heart failure via enhanced Gas6/Axl autocrine prosurvival signaling and paracrine cytoprotective action.

摘要

移植后细胞活力差限制了间充质干细胞(MSCs)在心肌梗死后心功能障碍中的治疗能力。生长停滞特异性基因 6(Gas6)编码一种分泌的 γ-羧基谷氨酸(Gla)含蛋白,在细胞生长、粘附、趋化性、有丝分裂和细胞存活中发挥作用。在这项研究中,我们通过心肌内递送将 Gas6 基因修饰到 MSCs 中,并评估了其在心肌梗死后大鼠模型中的细胞存活、心功能和梗死面积。功能研究表明,Gas6 转移可显著减少 MSC 凋亡,增加 MSC 在体外和体内的存活率,并且 Gas6 修饰的 MSC(MSC)处理的动物的梗死面积较小,与 MSC(MSC)处理的动物相比,功能恢复明显。从机制上讲,Gas6 可以增强磷脂酰肌醇 3-激酶(PI3K)/Akt 信号通路,并改善缺氧诱导因子 1α(HIF-1α)驱动的四种主要生长因子(VEGF、bFGF、SDF 和 IGF-1)在缺氧条件下的分泌,这种作用依赖于 Axl 的自分泌方式。MSC 的旁分泌作用通过将缺氧处理的 MSC 条件培养基与新生大鼠心肌细胞共培养以及用 VEGF、bFGF、SDF 和 IGF-1 的特异性受体抑制剂预处理心肌细胞进一步得到验证。总的来说,我们的数据表明,Gas6 可能通过增强 Gas6/Axl 自分泌生存信号和旁分泌细胞保护作用来提高 MSC 治疗心肌梗死后心力衰竭的疗效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索