Suppr超能文献

使用非侵入性方法预测耳蜗突触计数。

Use of non-invasive measures to predict cochlear synapse counts.

机构信息

VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, 97239, USA; Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA.

VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, 97239, USA; Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA.

出版信息

Hear Res. 2018 Dec;370:113-119. doi: 10.1016/j.heares.2018.10.006. Epub 2018 Oct 13.

Abstract

Cochlear synaptopathy, the loss of synaptic connections between inner hair cells (IHCs) and auditory nerve fibers, has been documented in animal models of aging, noise, and ototoxic drug exposure, three common causes of acquired sensorineural hearing loss in humans. In each of these models, synaptopathy begins prior to changes in threshold sensitivity or loss of hair cells; thus, this underlying injury can be hidden behind a normal threshold audiogram. Since cochlear synaptic loss cannot be directly confirmed in living humans, non-invasive assays will be required for diagnosis. In animals with normal auditory thresholds, the amplitude of wave 1 of the auditory brainstem response (ABR) is highly correlated with synapse counts. However, synaptopathy can also co-occur with threshold elevation, complicating the use of the ABR alone as a diagnostic measure. Using an age-graded series of mice and a partial least squares regression approach to model structure-function relationships, this study shows that the combination of a small number of ABR and distortion product otoacoustic emission (DPOAE) measurements can predict synaptic ribbon counts at various cochlear frequencies to within 1-2 synapses per IHC of their true value. In contrast, the model, trained using the age-graded series of mice, overpredicted synapse counts in a small sample of young noise-exposed mice, perhaps due to differences in the underlying pattern of damage between aging and noise-exposed mice. These results provide partial validation of a noninvasive approach to identify synaptic/neuronal loss in humans using ABRs and DPOAEs.

摘要

耳蜗突触病,即内毛细胞 (IHC) 和听神经纤维之间突触连接的丧失,已在衰老、噪声和耳毒性药物暴露的动物模型中得到证实,这三种情况是人类获得性感觉神经性听力损失的常见原因。在这些模型中的每一种中,突触病都发生在阈值敏感性变化或毛细胞丧失之前;因此,这种潜在的损伤可能隐藏在正常阈值听力图的背后。由于不能直接在活体人类中证实耳蜗突触丢失,因此需要非侵入性检测来进行诊断。在听觉阈值正常的动物中,听觉脑干反应 (ABR) 的波 1 幅度与突触计数高度相关。然而,突触病也可能与阈值升高同时发生,这使得 ABR 单独作为诊断措施的使用变得复杂。本研究使用一系列年龄分级的小鼠和偏最小二乘回归方法来模拟结构-功能关系,结果表明,少量 ABR 和畸变产物耳声发射 (DPOAE) 测量的组合可以预测各种耳蜗频率的突触带计数,其与真实值相差 1-2 个突触。相比之下,该模型在一小部分年轻噪声暴露的小鼠中过度预测了突触计数,这可能是由于衰老和噪声暴露的小鼠之间潜在的损伤模式存在差异。这些结果为使用 ABR 和 DPOAE 来识别人类的突触/神经元损失的非侵入性方法提供了部分验证。

相似文献

1
Use of non-invasive measures to predict cochlear synapse counts.
Hear Res. 2018 Dec;370:113-119. doi: 10.1016/j.heares.2018.10.006. Epub 2018 Oct 13.
2
Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears.
J Neurosci. 2015 May 13;35(19):7509-20. doi: 10.1523/JNEUROSCI.5138-14.2015.
4
Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).
Hear Res. 2017 Sep;353:213-223. doi: 10.1016/j.heares.2017.07.003. Epub 2017 Jul 8.
5
Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy.
J Neurosci. 2016 Mar 30;36(13):3755-64. doi: 10.1523/JNEUROSCI.4460-15.2016.
6
Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca-permeable AMPA receptors.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3828-3838. doi: 10.1073/pnas.1914247117. Epub 2020 Feb 3.
7
Reliability and interrelations of seven proxy measures of cochlear synaptopathy.
Hear Res. 2019 Apr;375:34-43. doi: 10.1016/j.heares.2019.01.018. Epub 2019 Jan 23.
8
Paired measurements of cochlear function and hair cell count in Dutch-belted rabbits with noise-induced hearing loss.
Hear Res. 2020 Jan;385:107845. doi: 10.1016/j.heares.2019.107845. Epub 2019 Nov 15.
9
Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
Acta Otolaryngol. 2015;135(11):1093-102. doi: 10.3109/00016489.2015.1061699. Epub 2015 Jul 3.
10
Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing.
J Neurosci. 2018 Aug 8;38(32):7108-7119. doi: 10.1523/JNEUROSCI.3240-17.2018. Epub 2018 Jul 5.

引用本文的文献

1
An Open-Source Deep Learning-Based GUI Toolbox for Automated Auditory Brainstem Response Analyses (ABRA).
Res Sq. 2025 Jun 20:rs.3.rs-6735294. doi: 10.21203/rs.3.rs-6735294/v1.
2
Developing a Calibration Method to Minimize Variability in Auditory Evoked Potentials.
J Assoc Res Otolaryngol. 2025 Apr;26(2):111-126. doi: 10.1007/s10162-025-00982-5. Epub 2025 Mar 21.
3
Perceptions of Artificial Intelligence Among Otolaryngologists in Saudi Arabia: A Cross-Sectional Study.
J Multidiscip Healthc. 2024 Aug 22;17:4101-4111. doi: 10.2147/JMDH.S478347. eCollection 2024.
4
An Open-Source Deep Learning-Based GUI Toolbox for Automated Auditory Brainstem Response Analyses (ABRA).
bioRxiv. 2025 Apr 2:2024.06.20.599815. doi: 10.1101/2024.06.20.599815.
8
Peripheral vestibular loss in noise-exposed firefighters.
Front Integr Neurosci. 2023 Oct 2;17:1236661. doi: 10.3389/fnint.2023.1236661. eCollection 2023.
9
Integrating pharmacogenomics into clinical trials of hearing disorders.
J Acoust Soc Am. 2022 Nov;152(5):2828. doi: 10.1121/10.0015092.

本文引用的文献

1
Primary Neural Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss in the Aging Ear.
Neuroscience. 2019 May 21;407:8-20. doi: 10.1016/j.neuroscience.2018.07.053. Epub 2018 Aug 10.
2
Effects of Recreational Noise on Threshold and Suprathreshold Measures of Auditory Function.
Semin Hear. 2017 Nov;38(4):298-318. doi: 10.1055/s-0037-1606325. Epub 2017 Oct 10.
3
Hidden Hearing Loss? No Effect of Common Recreational Noise Exposure on Cochlear Nerve Response Amplitude in Humans.
Front Neurosci. 2017 Sep 1;11:465. doi: 10.3389/fnins.2017.00465. eCollection 2017.
4
Auditory Brainstem Response Altered in Humans With Noise Exposure Despite Normal Outer Hair Cell Function.
Ear Hear. 2017 Jan/Feb;38(1):e1-e12. doi: 10.1097/AUD.0000000000000370.
5
Effects of noise exposure on young adults with normal audiograms I: Electrophysiology.
Hear Res. 2017 Feb;344:68-81. doi: 10.1016/j.heares.2016.10.028. Epub 2016 Nov 2.
6
Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue.
Hear Res. 2015 Sep;327:78-88. doi: 10.1016/j.heares.2015.04.014. Epub 2015 May 19.
7
Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears.
J Neurosci. 2015 May 13;35(19):7509-20. doi: 10.1523/JNEUROSCI.5138-14.2015.
8
Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss.
Hear Res. 2015 Dec;330(Pt B):191-9. doi: 10.1016/j.heares.2015.02.009. Epub 2015 Mar 11.
9
Individual differences reveal correlates of hidden hearing deficits.
J Neurosci. 2015 Feb 4;35(5):2161-72. doi: 10.1523/JNEUROSCI.3915-14.2015.
10
Auditory function in normal-hearing, noise-exposed human ears.
Ear Hear. 2015 Mar-Apr;36(2):172-84. doi: 10.1097/AUD.0000000000000107.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验