文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新型计算机辅助诊断系统用于溃疡性结肠炎患者的内镜疾病活动度评估。

Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis.

机构信息

Tada Tomohiro Institute of Gastroenterology and Proctology, Saitama, Japan; Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan.

Tada Tomohiro Institute of Gastroenterology and Proctology, Saitama, Japan; Department of Surgery, Sanno Hospital, The International University of Health and Welfare, Tokyo, Japan; Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

出版信息

Gastrointest Endosc. 2019 Feb;89(2):416-421.e1. doi: 10.1016/j.gie.2018.10.020. Epub 2018 Oct 24.


DOI:10.1016/j.gie.2018.10.020
PMID:30367878
Abstract

BACKGROUND AND AIMS: Evaluation of endoscopic disease activity for patients with ulcerative colitis (UC) is important when determining the treatment of choice. However, endoscopists require a certain period of training to evaluate the activity of inflammation properly, and interobserver variability exists. Therefore, we constructed a computer-assisted diagnosis (CAD) system using a convolutional neural network (CNN) and evaluated its performance using a large dataset of endoscopic images from patients with UC. METHODS: A CNN-based CAD system was constructed based on GoogLeNet architecture. The CNN was trained using 26,304 colonoscopy images from a cumulative total of 841 patients with UC, which were tagged with anatomic locations and Mayo endoscopic scores. The performance of the CNN in identifying normal mucosa (Mayo 0) and mucosal healing state (Mayo 0-1) was evaluated in an independent test set of 3981 images from 114 patients with UC, by calculating the areas under the receiver operating characteristic curves (AUROCs). In addition, AUROCs in the right side of the colon, left side of the colon, and rectum were evaluated. RESULTS: The CNN-based CAD system showed a high level of performance with AUROCs of 0.86 and 0.98 to identify Mayo 0 and 0-1, respectively. The performance of the CNN was better for the rectum than for the right side and left side of the colon when identifying Mayo 0 (AUROC = 0.92, 0.83, and 0.83, respectively). CONCLUSIONS: The performance of the CNN-based CAD system was robust when used to identify endoscopic inflammation severity in patients with UC, highlighting its promising role in supporting less-experienced endoscopists and reducing interobserver variability.

摘要

背景与目的:评估溃疡性结肠炎(UC)患者的内镜疾病活动度对于确定治疗选择非常重要。然而,内镜医师需要一定的培训期才能正确评估炎症活动度,并且存在观察者间的变异性。因此,我们使用卷积神经网络(CNN)构建了一个计算机辅助诊断(CAD)系统,并使用来自 UC 患者的大量内镜图像数据集评估了其性能。

方法:基于 GoogLeNet 架构构建了基于 CNN 的 CAD 系统。该 CNN 使用来自总共 841 例 UC 患者的 26,304 张结肠镜图像进行了训练,这些图像被标记为解剖位置和 Mayo 内镜评分。在一个来自 114 例 UC 患者的 3981 张图像的独立测试集中,通过计算受试者工作特征曲线下的面积(AUROCs),评估了 CNN 识别正常黏膜(Mayo 0)和黏膜愈合状态(Mayo 0-1)的性能。此外,还评估了右半结肠、左半结肠和直肠的 AUROCs。

结果:基于 CNN 的 CAD 系统表现出较高的性能,分别为 0.86 和 0.98 的 AUROC 来识别 Mayo 0 和 0-1。在识别 Mayo 0 时,CNN 的性能在直肠优于右半结肠和左半结肠(AUROC 分别为 0.92、0.83 和 0.83)。

结论:基于 CNN 的 CAD 系统在识别 UC 患者的内镜炎症严重程度方面表现稳健,这突出了其在支持经验较少的内镜医师和减少观察者间变异性方面的有前途的作用。

相似文献

[1]
Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis.

Gastrointest Endosc. 2018-10-24

[2]
Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video).

Gastrointest Endosc. 2018-9-27

[3]
Performance of a Deep Learning Model vs Human Reviewers in Grading Endoscopic Disease Severity of Patients With Ulcerative Colitis.

JAMA Netw Open. 2019-5-3

[4]
Development and Validation of a Deep Neural Network for Accurate Evaluation of Endoscopic Images From Patients With Ulcerative Colitis.

Gastroenterology. 2020-6

[5]
Fecal calprotectin predicts complete mucosal healing and better correlates with the ulcerative colitis endoscopic index of severity than with the Mayo endoscopic subscore in patients with ulcerative colitis.

BMC Gastroenterol. 2017-10-23

[6]
Evaluation of mucosal healing of ulcerative colitis by a quantitative fecal immunochemical test.

Am J Gastroenterol. 2012-9-25

[7]
Practical fecal calprotectin cut-off value for Japanese patients with ulcerative colitis.

World J Gastroenterol. 2018-10-14

[8]
Fecal Calprotectin Levels Predict Histological Healing in Ulcerative Colitis.

Inflamm Bowel Dis. 2017-9

[9]
Application of deep learning in the diagnosis and evaluation of ulcerative colitis disease severity.

Therap Adv Gastroenterol. 2023-12-22

[10]
Towards an Interpretable Classifier for Characterization of Endoscopic Mayo Scores in Ulcerative Colitis Using Raman Spectroscopy.

Anal Chem. 2020-10-20

引用本文的文献

[1]
Asia Pacific association of gastroenterology consensus statements on histopathological evaluation of inflammatory bowel diseases.

Therap Adv Gastroenterol. 2025-8-19

[2]
Digital biomarkers and artificial intelligence: a new frontier in personalized management of inflammatory bowel disease.

Front Immunol. 2025-8-4

[3]
Artificial Intelligence in Advancing Inflammatory Bowel Disease Management: Setting New Standards.

Cancers (Basel). 2025-7-14

[4]
A review on computer-aided diagnostic system to classify the disorders of the gastrointestinal tract.

Eur J Med Res. 2025-7-26

[5]
Artificial Intelligence in Endoscopic and Ultrasound Imaging for Inflammatory Bowel Disease.

J Clin Med. 2025-6-16

[6]
Comparative Analysis of Deep Neural Networks for Automated Ulcerative Colitis Severity Assessment.

Bioengineering (Basel). 2025-4-13

[7]
Artificial intelligence in inflammatory bowel disease.

Saudi J Gastroenterol. 2025-7-1

[8]
Artificial Intelligence in Inflammatory Bowel Disease Endoscopy.

Diagnostics (Basel). 2025-4-1

[9]
Artificial Intelligence-Enabled Clinical Trials in Inflammatory Bowel Disease: Automating and Enhancing Disease Assessment and Study Management.

Gastroenterology. 2025-8

[10]
Pathogenesis and precision medicine for predicting response in inflammatory bowel disease: advances and future directions.

eGastroenterology. 2024-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索