Suppr超能文献

基于特征正则化的低秩张量分解的不完整数据特征提取

Feature Extraction for Incomplete Data Via Low-Rank Tensor Decomposition With Feature Regularization.

作者信息

Shi Qiquan, Cheung Yiu-Ming, Zhao Qibin, Lu Haiping

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 Jun;30(6):1803-1817. doi: 10.1109/TNNLS.2018.2873655. Epub 2018 Oct 29.

Abstract

Multidimensional data (i.e., tensors) with missing entries are common in practice. Extracting features from incomplete tensors is an important yet challenging problem in many fields such as machine learning, pattern recognition, and computer vision. Although the missing entries can be recovered by tensor completion techniques, these completion methods focus only on missing data estimation instead of effective feature extraction. To the best of our knowledge, the problem of feature extraction from incomplete tensors has yet to be well explored in the literature. In this paper, we therefore tackle this problem within the unsupervised learning environment. Specifically, we incorporate low-rank tensor decomposition with feature variance maximization (TDVM) in a unified framework. Based on orthogonal Tucker and CP decompositions, we design two TDVM methods, TDVM-Tucker and TDVM-CP, to learn low-dimensional features viewing the core tensors of the Tucker model as features and viewing the weight vectors of the CP model as features. TDVM explores the relationship among data samples via maximizing feature variance and simultaneously estimates the missing entries via low-rank Tucker/CP approximation, leading to informative features extracted directly from observed entries. Furthermore, we generalize the proposed methods by formulating a general model that incorporates feature regularization into low-rank tensor approximation. In addition, we develop a joint optimization scheme to solve the proposed methods by integrating the alternating direction method of multipliers with the block coordinate descent method. Finally, we evaluate our methods on six real-world image and video data sets under a newly designed multiblock missing setting. The extracted features are evaluated in face recognition, object/action classification, and face/gait clustering. Experimental results demonstrate the superior performance of the proposed methods compared with the state-of-the-art approaches.

摘要

在实际应用中,带有缺失项的多维数据(即张量)很常见。从不完整张量中提取特征在机器学习、模式识别和计算机视觉等许多领域都是一个重要但具有挑战性的问题。虽然可以通过张量补全技术恢复缺失项,但这些补全方法仅专注于缺失数据估计,而非有效的特征提取。据我们所知,从不完整张量中提取特征的问题在文献中尚未得到充分探索。因此,在本文中,我们在无监督学习环境下解决这个问题。具体而言,我们在一个统一框架中结合了低秩张量分解和特征方差最大化(TDVM)。基于正交塔克分解和CP分解,我们设计了两种TDVM方法,即TDVM - 塔克方法和TDVM - CP方法,将塔克模型的核心张量视为特征,将CP模型的权重向量视为特征,以学习低维特征。TDVM通过最大化特征方差探索数据样本之间的关系,同时通过低秩塔克/CP近似估计缺失项,从而直接从观测项中提取信息丰富的特征。此外,我们通过制定一个将特征正则化纳入低秩张量近似的通用模型来推广所提出的方法。另外,我们开发了一种联合优化方案,通过将乘子交替方向法与块坐标下降法相结合来求解所提出的方法。最后,我们在新设计的多块缺失设置下,在六个真实世界的图像和视频数据集上评估我们的方法。提取的特征在人脸识别、对象/动作分类以及人脸/步态聚类中进行评估。实验结果表明,与现有方法相比,所提出的方法具有卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验