School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China.
Beijing Key Laboratory of Embedded Real-time Information Processing Technology, Beijing Institute of Technology, Beijing 100081, China.
Sensors (Basel). 2018 Oct 28;18(11):3662. doi: 10.3390/s18113662.
Anomaly detection is an important task in hyperspectral processing. Some previous works, based on statistical information, focus on Reed-Xiaoli (RX), as it is one of the most classical and commonly used methods. However, its performance tends to be affected when anomaly target size is smaller than spatial resolution. Those sub-pixel anomaly target spectra are usually much similar with background spectra, and may results in false alarm for traditional RX method. To address this issue, this paper proposes a hierarchical RX (H-RX) anomaly detection framework to enhance the performance. The proposed H-RX method consists of several different layers of original RX anomaly detector. In each layer, the RX's output of each pixel is restrained by a nonlinear function and then imposed as a coefficient on its spectrum for the next iteration. Furthermore, we design a spatial regularization layer to enhance the sub-pixel anomaly detection performance. To better illustrate the hierarchical framework, we provide a theoretical explanation of the hierarchical background spectra restraint and regularization process. Extensive experiments on three hyperspectral images illustrate that the proposed anomaly detection algorithm outperforms the original RX algorithm and some other classical methods.
异常检测是高光谱处理中的一项重要任务。一些之前的工作基于统计信息,侧重于里德-小利(RX),因为它是最经典和最常用的方法之一。然而,当异常目标尺寸小于空间分辨率时,其性能往往会受到影响。这些亚像素异常目标谱通常与背景谱非常相似,可能会导致传统 RX 方法产生误报。为了解决这个问题,本文提出了一种分层 RX(H-RX)异常检测框架来提高性能。所提出的 H-RX 方法由几个不同层的原始 RX 异常检测器组成。在每一层中,通过非线性函数约束每个像素的 RX 输出,然后将其作为下一次迭代的系数施加到其光谱上。此外,我们设计了一个空间正则化层来增强亚像素异常检测性能。为了更好地说明分层框架,我们提供了分层背景谱约束和正则化过程的理论解释。在三张高光谱图像上的广泛实验表明,所提出的异常检测算法优于原始 RX 算法和其他一些经典方法。