Suppr超能文献

转录因子 21 对于分支形态发生是必需的,并调节肾脏发育中的 Gdnf 轴。

Transcription Factor 21 Is Required for Branching Morphogenesis and Regulates the Gdnf-Axis in Kidney Development.

机构信息

Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.

Division of Kidney Diseases, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.

出版信息

J Am Soc Nephrol. 2018 Dec;29(12):2795-2808. doi: 10.1681/ASN.2017121278. Epub 2018 Oct 30.

Abstract

BACKGROUND

The mammalian kidney develops through reciprocal inductive signals between the metanephric mesenchyme and ureteric bud. Transcription factor 21 (Tcf21) is highly expressed in the metanephric mesenchyme, including Six2-expressing cap mesenchyme and Foxd1-expressing stromal mesenchyme. knockout mice die in the perinatal period from severe renal hypodysplasia. In humans, mRNA levels are reduced in renal tissue from human fetuses with renal dysplasia. The molecular mechanisms underlying these renal defects are not yet known.

METHODS

Using a variety of techniques to assess kidney development and gene expression, we compared the phenotypes of wild-type mice, mice with germline deletion of the gene, mice with stromal mesenchyme-specific deletion, and mice with cap mesenchyme-specific deletion.

RESULTS

Germline deletion of leads to impaired ureteric bud branching and is accompanied by downregulated expression of , a key pathway required for branching morphogenesis. Selective removal of from the renal stroma is also associated with attenuation of the Gdnf signaling axis and leads to a defect in ureteric bud branching, a paucity of collecting ducts, and a defect in urine concentration capacity. In contrast, deletion of from the cap mesenchyme leads to abnormal glomerulogenesis and massive proteinuria, but no downregulation of or obvious defect in branching.

CONCLUSIONS

Our findings indicate that Tcf21 has distinct roles in the cap mesenchyme and stromal mesenchyme compartments during kidney development and suggest that Tcf21 regulates key molecular pathways required for branching morphogenesis.

摘要

背景

哺乳动物的肾脏通过中肾间质和输尿管芽之间的相互诱导信号发育。转录因子 21(Tcf21)在中肾间质中高度表达,包括 Six2 表达的帽状间质和 Foxd1 表达的基质间质。 敲除小鼠在围产期因严重肾发育不良而死亡。在人类中, 在有肾发育不良的人类胎儿的肾组织中,mRNA 水平降低。这些肾脏缺陷的分子机制尚不清楚。

方法

我们使用各种技术来评估肾脏发育和基因表达,比较了野生型小鼠、生殖系缺失 基因的小鼠、基质间质特异性缺失的小鼠和帽状间质特异性缺失的小鼠的表型。

结果

基因的生殖系缺失导致输尿管芽分支受损,并伴有 的下调表达, 是分支形态发生所必需的关键途径。从肾脏基质中选择性去除 也与 Gdnf 信号轴的衰减有关,并导致输尿管芽分支缺陷、收集管减少以及尿液浓缩能力缺陷。相比之下,从帽状间质中缺失 导致异常的肾小球发生和大量蛋白尿,但 或分支的明显缺陷没有下调。

结论

我们的研究结果表明,Tcf21 在肾脏发育过程中在帽状间质和基质间质区室中具有不同的作用,并表明 Tcf21 调节分支形态发生所需的关键分子途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7744/6287866/0ca81959a569/ASN.2017121278absf1.jpg

相似文献

1
Transcription Factor 21 Is Required for Branching Morphogenesis and Regulates the Gdnf-Axis in Kidney Development.
J Am Soc Nephrol. 2018 Dec;29(12):2795-2808. doi: 10.1681/ASN.2017121278. Epub 2018 Oct 30.
5
Downregulation of Spry-1, an inhibitor of GDNF/Ret, causes angiotensin II-induced ureteric bud branching.
Kidney Int. 2008 Nov;74(10):1287-93. doi: 10.1038/ki.2008.378. Epub 2008 Jul 23.
6
8
GDNF/Ret signaling and the development of the kidney.
Bioessays. 2006 Feb;28(2):117-27. doi: 10.1002/bies.20357.
9
Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney.
Development. 2001 Nov;128(21):4329-38. doi: 10.1242/dev.128.21.4329.
10
Protein kinase A regulates GDNF/RET-dependent but not GDNF/Ret-independent ureteric bud outgrowth from the Wolffian duct.
Dev Biol. 2010 Nov 15;347(2):337-47. doi: 10.1016/j.ydbio.2010.08.029. Epub 2010 Sep 15.

引用本文的文献

4
Transcription factor Tcf21 modulates urinary bladder size and differentiation.
Dev Growth Differ. 2024 Feb;66(2):106-118. doi: 10.1111/dgd.12906. Epub 2024 Jan 10.
5
Stromal netrin 1 coordinates renal arteriogenesis and mural cell differentiation.
Development. 2023 Nov 15;150(22). doi: 10.1242/dev.201884. Epub 2023 Nov 22.
6
Senescence-associated inflammation and inhibition of adipogenesis in subcutaneous fat in Werner syndrome.
Aging (Albany NY). 2023 Oct 3;15(19):9948-9964. doi: 10.18632/aging.205078.
8
The transcriptional and regulatory identity of erythropoietin producing cells.
Nat Med. 2023 May;29(5):1191-1200. doi: 10.1038/s41591-023-02314-7. Epub 2023 Apr 27.
9
An integrated co-expression network analysis reveals novel genetic biomarkers for immune cell infiltration in chronic kidney disease.
Front Immunol. 2023 Feb 17;14:1129524. doi: 10.3389/fimmu.2023.1129524. eCollection 2023.
10
Single-Cell Chromatin and Gene-Regulatory Dynamics of Mouse Nephron Progenitors.
J Am Soc Nephrol. 2022 Jul;33(7):1308-1322. doi: 10.1681/ASN.2021091213. Epub 2022 Apr 5.

本文引用的文献

1
Genetic basis of human congenital anomalies of the kidney and urinary tract.
J Clin Invest. 2018 Jan 2;128(1):4-15. doi: 10.1172/JCI95300.
2
TCF21 hypermethylation regulates renal tumor cell clonogenic proliferation and migration.
Mol Oncol. 2018 Feb;12(2):166-179. doi: 10.1002/1878-0261.12149. Epub 2017 Dec 14.
3
Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract.
J Am Soc Nephrol. 2018 Jan;29(1):36-50. doi: 10.1681/ASN.2017050561. Epub 2017 Oct 27.
4
Cellular heterogeneity in the ureteric progenitor niche and distinct profiles of branching morphogenesis in organ development.
Development. 2017 Sep 1;144(17):3177-3188. doi: 10.1242/dev.149112. Epub 2017 Jul 13.
6
The contribution of branching morphogenesis to kidney development and disease.
Nat Rev Nephrol. 2016 Dec;12(12):754-767. doi: 10.1038/nrneph.2016.157. Epub 2016 Nov 7.
7
Exploring the genetic basis of early-onset chronic kidney disease.
Nat Rev Nephrol. 2016 Mar;12(3):133-46. doi: 10.1038/nrneph.2015.205. Epub 2016 Jan 11.
8
Genetic, environmental, and epigenetic factors involved in CAKUT.
Nat Rev Nephrol. 2015 Dec;11(12):720-31. doi: 10.1038/nrneph.2015.140. Epub 2015 Aug 18.
10
A stringent validation of mouse adipose tissue identity markers.
Am J Physiol Endocrinol Metab. 2015 Jun 15;308(12):E1085-105. doi: 10.1152/ajpendo.00023.2015. Epub 2015 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验