Suppr超能文献

人诱导多能干细胞的逐步软骨形成和通过 CRISPR-Cas9 基因组编辑产生的报告基因等位基因的纯化。

Step-Wise Chondrogenesis of Human Induced Pluripotent Stem Cells and Purification Via a Reporter Allele Generated by CRISPR-Cas9 Genome Editing.

机构信息

Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.

Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.

出版信息

Stem Cells. 2019 Jan;37(1):65-76. doi: 10.1002/stem.2931. Epub 2018 Oct 31.

Abstract

The differentiation of human induced pluripotent stem cells (hiPSCs) to prescribed cell fates enables the engineering of patient-specific tissue types, such as hyaline cartilage, for applications in regenerative medicine, disease modeling, and drug screening. In many cases, however, these differentiation approaches are poorly controlled and generate heterogeneous cell populations. Here, we demonstrate cartilaginous matrix production in three unique hiPSC lines using a robust and reproducible differentiation protocol. To purify chondroprogenitors (CPs) produced by this protocol, we engineered a COL2A1-GFP knock-in reporter hiPSC line by CRISPR-Cas9 genome editing. Purified CPs demonstrated an improved chondrogenic capacity compared with unselected populations. The ability to enrich for CPs and generate homogenous matrix without contaminating cell types will be essential for regenerative and disease modeling applications. Stem Cells 2019;37:65-76.

摘要

人诱导多能干细胞(hiPSCs)向特定细胞命运的分化使工程特定于患者的组织类型成为可能,例如透明软骨,用于再生医学、疾病建模和药物筛选。然而,在许多情况下,这些分化方法控制不佳并且产生异质细胞群体。在这里,我们使用稳健且可重复的分化方案展示了三种独特的 hiPSC 系中的软骨基质产生。为了纯化该方案产生的软骨祖细胞(CPs),我们通过 CRISPR-Cas9 基因组编辑工程设计了 COL2A1-GFP 敲入报告 hiPSC 系。与未选择的群体相比,纯化的 CPs 表现出改善的软骨生成能力。富集 CPs 并生成无混杂细胞类型的同质基质的能力对于再生和疾病建模应用将是必不可少的。干细胞 2019;37:65-76。

相似文献

3
CRISPR/Cas9-Mediated Genome Editing to Generate Clonal iPSC Lines.
Methods Mol Biol. 2022;2454:589-606. doi: 10.1007/7651_2021_362.
4
5
Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
Nat Protoc. 2017 Jan;12(1):88-103. doi: 10.1038/nprot.2016.152. Epub 2016 Dec 8.
6
CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells.
Curr Protoc Stem Cell Biol. 2018 Feb 28;44:5B.7.1-5B.7.22. doi: 10.1002/cpsc.46.
8
A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
Acta Pharmacol Sin. 2020 Nov;41(11):1427-1432. doi: 10.1038/s41401-020-0452-0. Epub 2020 Jun 18.

引用本文的文献

1
Skeletal stem cells, a new direction for the treatment of bone and joint diseases.
World J Orthop. 2025 Aug 18;16(8):108407. doi: 10.5312/wjo.v16.i8.108407.
2
Recapitulation of endochondral ossification by hPSC-derived SOX9 sclerotomal progenitors.
Nat Commun. 2025 Mar 21;16(1):2781. doi: 10.1038/s41467-025-58122-9.
3
Skeletal dysplasia-causing mutations in TRPV4 alter the chondrocyte transcriptomic response to mechanical loading.
Am J Physiol Cell Physiol. 2025 Apr 1;328(4):C1135-C1149. doi: 10.1152/ajpcell.01066.2024. Epub 2025 Feb 28.
4
Autologous iPSC- and MSC-derived chondrocyte implants for cartilage repair in a miniature pig model.
Stem Cell Res Ther. 2025 Feb 23;16(1):86. doi: 10.1186/s13287-025-04215-7.
5
Reporter Alleles in hiPSCs: Visual Cues on Development and Disease.
Int J Mol Sci. 2024 Oct 13;25(20):11009. doi: 10.3390/ijms252011009.
6
Isolation and tracing of matrix-producing notochordal and chondrocyte cells using ACAN-2A-mScarlet reporter human iPSC lines.
Sci Adv. 2024 Oct 25;10(43):eadp3170. doi: 10.1126/sciadv.adp3170. Epub 2024 Oct 23.
7
The role of DNA methylation in chondrogenesis of human iPSCs as a stable marker of cartilage quality.
Clin Epigenetics. 2024 Oct 15;16(1):141. doi: 10.1186/s13148-024-01759-y.
9
ER procollagen storage defect without coupled unfolded protein response drives precocious arthritis.
Life Sci Alliance. 2024 Jul 9;7(9). doi: 10.26508/lsa.202402842. Print 2024 Sep.
10
iPSCs chondrogenic differentiation for personalized regenerative medicine: a literature review.
Stem Cell Res Ther. 2024 Jun 26;15(1):185. doi: 10.1186/s13287-024-03794-1.

本文引用的文献

1
Genetic Lineage Tracing of Nonmyocyte Population by Dual Recombinases.
Circulation. 2018 Aug 21;138(8):793-805. doi: 10.1161/CIRCULATIONAHA.118.034250.
2
Scaffold-free tissue engineering for injured joint surface restoration.
J Exp Orthop. 2018 Jan 5;5(1):2. doi: 10.1186/s40634-017-0118-0.
4
Genome Engineering for Personalized Arthritis Therapeutics.
Trends Mol Med. 2017 Oct;23(10):917-931. doi: 10.1016/j.molmed.2017.08.002. Epub 2017 Sep 5.
6
Common genetic variation drives molecular heterogeneity in human iPSCs.
Nature. 2017 Jun 15;546(7658):370-375. doi: 10.1038/nature22403. Epub 2017 May 10.
7
Induced Pluripotent Stem Cell Differentiation Enables Functional Validation of GWAS Variants in Metabolic Disease.
Cell Stem Cell. 2017 Apr 6;20(4):547-557.e7. doi: 10.1016/j.stem.2017.01.010.
9
10
Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
Nat Protoc. 2017 Apr;12(4):828-863. doi: 10.1038/nprot.2017.016. Epub 2017 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验