State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering , Qingdao University , Qingdao 266071 , P. R. China.
School of Natural Sciences and Queensland, Micro- and Nanotechnology Centre , Griffith University , Nathan Campus , Brisbane 4111 , Australia.
ACS Appl Mater Interfaces. 2018 Nov 28;10(47):40531-40539. doi: 10.1021/acsami.8b13805. Epub 2018 Nov 13.
Transition metal sulfides (TMSs) with high theoretical specific capacity and superior electrochemical performance are promising anode material candidates for sodium-ion batteries (SIBs). However, the structural pulverization because of the severe volume change in the discharge/charge process leads to a severe capacity decay, limited rate performance, and poor cycling stability, which inhibits their practical application. Herein, we report a novel strategy for the synthesis of TMS hollow nanoparticles@carbon fibers (TMS-HNP@CFs- T) by using seaweed-derived alginate as the template and precursor. When evaluated as anode materials for SIBs, the hybrids display excellent sodium storage performance. For instance, CoS-HNP@CFs-900 exhibits high reversible specific capacity, significant cycling stability (392.2 mA h g at 1000 mA g over 100 cycles), and rate performance (334.2 mA h g can be achieved at 5000 mA g). The hollow TMP NPs and conductive carbon fibers could synergistically reduce the expansion of volume and shorten the ion transport path to boost the sodium storage performance.
过渡金属硫化物(TMSs)具有高的理论比容量和优异的电化学性能,是钠离子电池(SIBs)有前途的阳极材料候选物。然而,由于在放电/充电过程中体积变化剧烈,导致结构粉碎,从而严重衰减容量、限制倍率性能和循环稳定性,这抑制了它们的实际应用。在此,我们报告了一种通过使用海藻衍生的海藻酸钠作为模板和前体制备 TMS 空心纳米粒子@碳纤维(TMS-HNP@CFs-T)的新策略。当将其用作钠离子电池的阳极材料时,该复合材料显示出优异的储钠性能。例如,CoS-HNP@CFs-900 表现出高的可逆比容量、显著的循环稳定性(在 1000 mA g 下 100 次循环后为 392.2 mA h g)和倍率性能(在 5000 mA g 时可达到 334.2 mA h g)。空心 TMP NPs 和导电碳纤维可以协同作用,减少体积膨胀并缩短离子传输路径,从而提高储钠性能。