Simpson D J W
Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand.
Chaos. 2018 Oct;28(10):103114. doi: 10.1063/1.5037947.
As parameters are varied, a boundary equilibrium bifurcation (BEB) occurs when an equilibrium collides with a discontinuity surface in a piecewise-smooth system of ordinary differential equations. Under certain genericity conditions, at a BEB, the equilibrium either transitions to a pseudo-equilibrium (on the discontinuity surface) or collides and annihilates with a coexisting pseudo-equilibrium. These two scenarios are distinguished by the sign of a certain inner product. Here, it is shown that this sign can be determined from the number of unstable directions associated with the two equilibria by using techniques developed by Feigin. A normal form is proposed for BEBs in systems of any number of dimensions. The normal form involves a companion matrix, as does the leading order sliding dynamics, and so the connection to the stability of the equilibria is explicit. In two dimensions, the parameters of the normal form distinguish, in a simple way, the eight topologically distinct cases for the generic local dynamics at a BEB. A numerical exploration in three dimensions reveals that BEBs can create multiple attractors and chaotic attractors and that the equilibrium at the BEB can be unstable even if both equilibria are stable. The developments presented here stem from seemingly unutilised similarities between BEBs in discontinuous systems (specifically Filippov systems as studied here) and BEBs in continuous systems for which analogous results are, to date, more advanced.
随着参数的变化,当一个平衡点在常微分方程的分段光滑系统中与一个间断面碰撞时,就会出现边界平衡分岔(BEB)。在某些一般性条件下,在一个BEB处,平衡点要么转变为一个伪平衡点(在间断面上),要么与一个共存的伪平衡点碰撞并消失。这两种情况由某个内积的符号来区分。在此表明,通过使用费金开发的技术,可以根据与这两个平衡点相关的不稳定方向的数量来确定这个符号。针对任意维数系统中的BEB提出了一种范式。该范式涉及一个伴随矩阵,主导阶滑动动力学也是如此,因此与平衡点稳定性的联系是明确的。在二维中,范式的参数以一种简单的方式区分了BEB处一般局部动力学的八种拓扑不同情况。三维中的数值探索表明,BEB可以产生多个吸引子和混沌吸引子,并且即使两个平衡点都是稳定的,BEB处的平衡点也可能是不稳定的。这里所呈现的进展源于间断系统(特别是本文所研究的菲利波夫系统)中的BEB与连续系统中的BEB之间看似未被利用的相似性,而对于连续系统,迄今为止类似结果更为先进。