Suppr超能文献

发育性静脉异常与静息态功能 MRI 测量的相互作用。

Interaction of Developmental Venous Anomalies with Resting-State Functional MRI Measures.

机构信息

From the Nuffield Department of Clinical Neurosciences (B.S., G.D.), Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK

Institute of Clinical Radiology (B.S., B.P.), Medical Faculty, University of Münster and University Hospital Münster, Münster, Germany.

出版信息

AJNR Am J Neuroradiol. 2018 Dec;39(12):2326-2331. doi: 10.3174/ajnr.A5847. Epub 2018 Nov 1.

Abstract

BACKGROUND AND PURPOSE

Functional MR imaging of the brain, used for both clinical and neuroscientific applications, relies on measuring fluctuations in blood oxygenation. Such measurements are susceptible to noise of vascular origin. The purpose of this study was to assess whether developmental venous anomalies, which are frequently observed normal variants, can bias fMRI measures by appearing as true neural signal.

MATERIALS AND METHODS

Large developmental venous anomalies (1 in each of 14 participants) were identified from a large neuroimaging cohort ( = 814). Resting-state fMRI data were decomposed using independent component analysis, a data-driven technique that creates distinct component maps representing aspects of either structured noise or true neural activity. We searched all independent components for maps that exhibited a spatial distribution of their signals following the topography of developmental venous anomalies.

RESULTS

Of the 14 developmental venous anomalies identified, 10 were clearly present in 17 fMRI independent components in total. While 9 (52.9%) of these 17 independent components were dominated by venous contributions and 2 (11.8%) by motion artifacts, 2 independent components (11.8%) showed partial neural signal contributions and 5 independent components (29.4%) unambiguously exhibited typical neural signal patterns.

CONCLUSIONS

Developmental venous anomalies can strongly resemble neural signal as measured by fMRI. They are thus a potential source of bias in fMRI analyses, especially when present in the cortex. This could impede interpretation of local activity in patients, such as in presurgical mapping. In scientific studies with large samples, developmental venous anomaly confounds could be mainly addressed using independent component analysis-based denoising.

摘要

背景与目的

用于临床和神经科学应用的脑功能磁共振成像依赖于测量血氧水平的波动。这些测量易受到血管源性噪声的影响。本研究旨在评估发育性静脉异常(一种常见的正常变异)是否会通过表现为真实的神经信号而对 fMRI 测量产生偏差。

材料与方法

从一个大型神经影像学队列(=814)中确定了 14 名参与者中的每一个都存在的大的发育性静脉异常。使用独立成分分析(一种创建代表结构噪声或真实神经活动的不同成分图的数据驱动技术)对静息状态 fMRI 数据进行分解。我们搜索了所有独立成分,以寻找其信号的空间分布遵循发育性静脉异常的地形图的成分图。

结果

在确定的 14 个发育性静脉异常中,共有 10 个在总共 17 个 fMRI 独立成分中明显存在。虽然这 17 个独立成分中有 9 个(52.9%)主要由静脉贡献,2 个(11.8%)由运动伪影主导,但有 2 个独立成分(11.8%)显示出部分神经信号贡献,5 个独立成分(29.4%)明确显示出典型的神经信号模式。

结论

发育性静脉异常在 fMRI 测量中可以强烈地类似于神经信号。因此,它们是 fMRI 分析中的一个潜在偏差源,尤其是在皮层中存在时。这可能会妨碍对患者局部活动的解释,例如在术前映射中。在具有大样本的科学研究中,可以使用基于独立成分分析的去噪主要解决发育性静脉异常的混杂问题。

相似文献

1
Interaction of Developmental Venous Anomalies with Resting-State Functional MRI Measures.
AJNR Am J Neuroradiol. 2018 Dec;39(12):2326-2331. doi: 10.3174/ajnr.A5847. Epub 2018 Nov 1.
2
The Many Faces of Cerebral Developmental Venous Anomaly and Its Mimicks: Spectrum of Imaging Findings.
J Neuroimaging. 2016 Sep;26(5):463-72. doi: 10.1111/jon.12373. Epub 2016 Jun 28.
3
Developmental venous anomalies.
Handb Clin Neurol. 2017;143:279-282. doi: 10.1016/B978-0-444-63640-9.00026-6.
4
Resting-state fMRI confounds and cleanup.
Neuroimage. 2013 Oct 15;80:349-59. doi: 10.1016/j.neuroimage.2013.04.001. Epub 2013 Apr 6.
6
Diffusion and perfusion MRI findings of the signal-intensity abnormalities of brain associated with developmental venous anomaly.
AJNR Am J Neuroradiol. 2014 Aug;35(8):1539-42. doi: 10.3174/ajnr.A3900. Epub 2014 Mar 20.
7
Infratentorial Developmental Venous Abnormalities and Inflammation Increase Odds of Sporadic Cavernous Malformation.
J Stroke Cerebrovasc Dis. 2019 Jun;28(6):1662-1667. doi: 10.1016/j.jstrokecerebrovasdis.2019.02.025. Epub 2019 Mar 14.
8
Multiple Brain Developmental Venous Anomalies as a Marker for Constitutional Mismatch Repair Deficiency Syndrome.
AJNR Am J Neuroradiol. 2018 Oct;39(10):1943-1946. doi: 10.3174/ajnr.A5766. Epub 2018 Aug 30.
9
Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
Neuroimage. 2014 Apr 15;90:449-68. doi: 10.1016/j.neuroimage.2013.11.046. Epub 2014 Jan 2.
10
Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion.
Neuroimage. 2014 Dec;103:33-47. doi: 10.1016/j.neuroimage.2014.09.013. Epub 2014 Sep 16.

引用本文的文献

2
Functional MRI in Neuro-Oncology: State of the Art and Future Directions.
Radiology. 2023 Sep;308(3):e222028. doi: 10.1148/radiol.222028.

本文引用的文献

1
Integration of resting state functional MRI into clinical practice - A large single institution experience.
PLoS One. 2018 Jun 22;13(6):e0198349. doi: 10.1371/journal.pone.0198349. eCollection 2018.
2
Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know.
AJNR Am J Neuroradiol. 2018 Aug;39(8):1390-1399. doi: 10.3174/ajnr.A5527. Epub 2018 Jan 18.
3
A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease.
Neuroimage. 2018 Feb 15;167:62-72. doi: 10.1016/j.neuroimage.2017.11.025. Epub 2017 Nov 14.
6
Resting connectivity predicts task activation in pre-surgical populations.
Neuroimage Clin. 2016 Dec 24;13:378-385. doi: 10.1016/j.nicl.2016.12.028. eCollection 2017.
7
Hand classification of fMRI ICA noise components.
Neuroimage. 2017 Jul 1;154:188-205. doi: 10.1016/j.neuroimage.2016.12.036. Epub 2016 Dec 16.
8
Methods for cleaning the BOLD fMRI signal.
Neuroimage. 2017 Jul 1;154:128-149. doi: 10.1016/j.neuroimage.2016.12.018. Epub 2016 Dec 9.
9
Management of Intracranial Incidental Findings on Brain MRI.
Rofo. 2016 Dec;188(12):1123-1133. doi: 10.1055/s-0042-111075. Epub 2016 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验