Suppr超能文献

利用预测分析提前识别短期残疾索赔人,这些人将用尽他们的福利。

Using Predictive Analytics for Early Identification of Short-Term Disability Claimants Who Exhaust Their Benefits.

机构信息

Mathematica Policy Research, 505 14th Street, Suite 800, Oakland, CA, 94612, USA.

Mathematica Policy Research, 1100 1st Street, NE, 12th Floor, Washington, DC, 20002, USA.

出版信息

J Occup Rehabil. 2018 Dec;28(4):584-596. doi: 10.1007/s10926-018-9815-5.

Abstract

Purpose Early interventions can help short-term disability insurance (STDI) claimants return to work following onset of an off-the-job medical condition. Accurately targeting such interventions involves identifying claimants who would, without intervention, exhaust STDI benefits and transition to longer-term support. We identify factors that predict STDI exhaustion and transfer to long-term disability insurance (LTDI). We also explore whether waiting for some claims to resolve without intervention improves targeting efficiency. Methods We use a large database of STDI claims from private employer-sponsored disability insurance programs in the United States to predict which claims will exhaust STDI or transition to LTDI. We use a split sample approach, conducting logistic regressions on half of our data and generating predictions for the other half. We assess predictive accuracy using ROC curve analysis, repeating on successive subsamples, omitting claims that resolve within 2, 4, and 6 weeks. Results Age, primary diagnosis, and employer industry were associated with the two outcomes. Rapid attrition of short-duration claims from the sample means that waiting can substantially increase the efficiency of targeting efforts. Overall accuracy of classification increases from 63.2% at week 0 to 82.9% at week 6 for exhausting STDI benefits, and from 63.7 to 83.0% for LTDI transfer. Conclusions Waiting even a few weeks can substantially increase the accuracy of early intervention targeting by allowing claims that will resolve without further intervention to do so. Predictive modeling further narrows the target population based on claim characteristics, reducing intervention costs. Before adopting a waiting strategy, however, it is important to consider potential trade-offs involved in delaying the start of any intervention.

摘要

目的

早期干预可以帮助短期伤残保险(STDI)索赔人在非工作期间出现医疗状况后重返工作岗位。准确地进行这种干预需要确定哪些索赔人如果没有干预,将耗尽 STDI 福利并过渡到长期支持。我们确定了预测 STDI 耗尽和过渡到长期残疾保险(LTDI)的因素。我们还探讨了等待某些索赔在没有干预的情况下自行解决是否会提高目标效率。

方法

我们使用美国私人雇主赞助的残疾保险计划的大型 STDI 索赔数据库来预测哪些索赔将耗尽 STDI 或过渡到 LTDI。我们使用分样本方法,对数据的一半进行逻辑回归,并为另一半生成预测。我们使用 ROC 曲线分析评估预测准确性,在连续的子样本上重复进行,排除在 2、4 和 6 周内解决的索赔。

结果

年龄、主要诊断和雇主行业与这两个结果相关。从样本中快速流失短期索赔意味着等待可以大大提高目标定位努力的效率。分类的总体准确性从第 0 周的 63.2%增加到第 6 周的耗尽 STDI 福利的 82.9%,从第 63.7%增加到 LTDI 转移的 83.0%。

结论

即使等待几周,也可以通过允许无需进一步干预即可自行解决的索赔来大大提高早期干预目标的准确性。预测模型根据索赔特征进一步缩小目标人群,降低干预成本。然而,在采用等待策略之前,重要的是要考虑延迟任何干预开始所涉及的潜在权衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验