Kondou Ryota, Iizuka Akira, Nonomura Chizu, Miyata Haruo, Ashizawa Tadashi, Nagashima Takeshi, Ohshima Keiichi, Urakami Kenichi, Kusuhara Masatoshi, Yamaguchi Ken, Akiyama Yasuto
Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan.
SRL Inc., Tokyo 191-0002, Japan.
Int J Oncol. 2019 Jan;54(1):219-228. doi: 10.3892/ijo.2018.4617. Epub 2018 Nov 2.
In 2014, the Shizuoka Cancer Center launched project High‑tech Omics‑based Patient Evaluation (HOPE), which features whole exome sequencing (WES) and gene expression profiling (GEP) of fresh surgical specimens from cancer patients. With the development of clinical trials of programmed death‑1 (PD‑1)/PD‑ligand 1 (PD‑L1) blockade, PD‑L1 expression and a high tumor mutation burden become possible biomarkers that could be used to predict immune responses. In this study, based on WES and GEP data from 1,734 tumors from the HOPE project, we established a tumor microenvironment (TME) immune‑type classification consisting of 4 types to evaluate the immunological status of cancer patients and analyze immunological pathways specific for immune types. Project HOPE was conducted in accordance with the Ethical Guidelines for Human Genome and Genetic Analysis Research with the approval of the Institutional Review Board. Based on the expression level of the PD‑L1 and CD8B genes, the immunological status was divided into 4 types as follows: A, PD‑L1+CD8B+; B, PD‑L1+CD8B‑; C, PD‑L1‑CD8B‑; and D, PD‑L1‑CD8B+. Type A, with PD‑L1+ and CD8B+, exhibited an upregulation of cytotoxic T lymphocyte (CTL) killing‑associated genes, T‑cell activation genes, antigen‑presentation and dendritic cell (DC) maturation genes, and T‑cell‑attracting chemokine genes, which promoted Th1 antitumor responses. By contrast, type C, with PD‑L1‑ and CD8B‑, exhibited a low expression of T‑cell‑activating genes and an upregulation of cancer driver gene signaling, which suggested an immune‑suppressive status. With regard to hypermutator tumors, PD‑L1+ hypermutator cases exhibited a specific upregulation of the IL6 gene compared with the PD‑L1‑ cases. On the whole, our data indicate that the classification of the TME immune types may prove to be a useful tool for evaluating the immunological status and predicting antitumor responses and prognosis.
2014年,静冈癌症中心启动了基于高科技组学的患者评估(HOPE)项目,该项目的特色是对癌症患者的新鲜手术标本进行全外显子组测序(WES)和基因表达谱分析(GEP)。随着程序性死亡1(PD-1)/程序性死亡配体1(PD-L1)阻断临床试验的开展,PD-L1表达和高肿瘤突变负荷成为了可能用于预测免疫反应的生物标志物。在本研究中,基于HOPE项目中1734个肿瘤的WES和GEP数据,我们建立了一个由4种类型组成的肿瘤微环境(TME)免疫类型分类,以评估癌症患者的免疫状态并分析免疫类型特异性的免疫途径。HOPE项目是根据人类基因组和遗传分析研究伦理准则进行的,并获得了机构审查委员会的批准。根据PD-L1和CD8B基因的表达水平,免疫状态分为以下4种类型:A,PD-L1+CD8B+;B,PD-L1+CD8B-;C,PD-L1-CD8B-;D,PD-L1-CD8B+。A类,即PD-L1+和CD8B+,表现出细胞毒性T淋巴细胞(CTL)杀伤相关基因、T细胞活化基因、抗原呈递和树突状细胞(DC)成熟基因以及T细胞趋化因子基因的上调,这促进了Th1抗肿瘤反应。相比之下,C类,即PD-L1-和CD8B-,表现出T细胞活化基因的低表达和癌症驱动基因信号的上调,这表明处于免疫抑制状态。对于高突变肿瘤,与PD-L1-病例相比,PD-L1+高突变病例的IL6基因有特异性上调。总体而言,我们的数据表明,TME免疫类型的分类可能被证明是评估免疫状态、预测抗肿瘤反应和预后的有用工具。