School of Environmental Science, College of Environment, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036, Liaoning, China.
College of Light Industry, Liaoning University, Shenyang, 110036, China.
J Comput Aided Mol Des. 2018 Nov;32(11):1217-1227. doi: 10.1007/s10822-018-0136-8. Epub 2018 Nov 3.
Genetics experiments have identified six mutations located in the subdomain IA (A17V, R23H, G32D, G32S, R34K, V372I) of Ssa1 that influence propagation of the yeast [PSI] prion. However, the underlining molecular mechanisms of these mutations are still unclear. The six mutation sites are present in the IA subdomain of the nucleotide-binding domain (NBD). The ATPase subdomain IA is a critical mediator of inter-domain allostery in Hsp70 molecular chaperones, so the mutation and changes in this subdomain may influence the function of the substrate-binding domain. In addition, ADP release is a rate-limiting step of the ATPase cycle and dysregulation of the ATPase cycle influences the propagation of the yeast [PSI] prion. In this work, steered molecular dynamics (SMD) simulations were performed to explore the interaction between ADP and NBD. Results suggest that during the SMD simulations, hydrophobic interactions are predominant and variations in the binding state of ADP within the mutants is a potential reason for in vivo effects on yeast [PSI] prion propagation. Additionally, we identify the primary residues in the ATPase domain that directly constitute the main hydrophobic interaction network and directly influence the ADP interaction state with the NBD of Ssa1. Furthermore, this in silico analysis reaffirms the importance of previously experimentally-determined residues in the Hsp70 ATPase domain involved in ADP binding and also identifies new residues potentially involved in this process.
遗传学实验已经确定了位于 Ssa1 的核苷酸结合域(NBD)IA 亚域中的六个突变(A17V、R23H、G32D、G32S、R34K、V372I),这些突变影响酵母 [PSI] 朊病毒的传播。然而,这些突变的潜在分子机制仍不清楚。这六个突变位点存在于 IA 亚域的核苷酸结合域(NBD)中。ATPase IA 亚域是 Hsp70 分子伴侣中域间变构的关键介质,因此该亚域的突变和变化可能会影响底物结合域的功能。此外,ADP 释放是 ATPase 循环的限速步骤,ATPase 循环的失调会影响酵母 [PSI] 朊病毒的传播。在这项工作中,进行了导向分子动力学(SMD)模拟,以探索 ADP 与 NBD 之间的相互作用。结果表明,在 SMD 模拟过程中,疏水性相互作用占主导地位,突变体中 ADP 的结合状态的变化是对酵母 [PSI] 朊病毒传播产生体内影响的潜在原因。此外,我们确定了 ATPase 结构域中的主要残基,这些残基直接构成主要的疏水性相互作用网络,并直接影响 ADP 与 Ssa1 的 NBD 的相互作用状态。此外,这种计算机分析再次证实了先前在 HSP70 ATPase 结构域中确定的与 ADP 结合相关的重要残基的重要性,并确定了新的残基可能参与该过程。