Chen Yang, Yang Xiaodong, Gao Jie
Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409 USA.
Light Sci Appl. 2018 Oct 31;7:84. doi: 10.1038/s41377-018-0086-x. eCollection 2018.
Metasurfaces, as a two-dimensional (2D) version of metamaterials, have drawn considerable attention for their revolutionary capability in manipulating the amplitude, phase, and polarization of light. As one of the most important types of metasurfaces, geometric metasurfaces provide a versatile platform for controlling optical phase distributions due to the geometric nature of the generated phase profile. However, it remains a great challenge to design geometric metasurfaces for realizing spin-switchable functionalities because the generated phase profile with the converted spin is reversed once the handedness of the incident beam is switched. Here, we propose and experimentally demonstrate chiral geometric metasurfaces based on intrinsically chiral plasmonic stepped nanoapertures with a simultaneously high circular dichroism in transmission (CDT) and large cross-polarization ratio (CPR) in transmitted light to exhibit spin-controlled wavefront shaping capabilities. The chiral geometric metasurfaces are constructed by merging two independently designed subarrays of the two enantiomers for the stepped nanoaperture. Under a certain incident handedness, the transmission from one subarray is allowed, while the transmission from the other subarray is strongly prohibited. The merged metasurface then only exhibits the transmitted signal with the phase profile of one subarray, which can be switched by changing the incident handedness. Based on the chiral geometric metasurface, both chiral metasurface holograms and the spin-dependent generation of hybrid-order Poincaré sphere beams are experimentally realized. Our approach promises further applications in spin-controlled metasurface devices for complex beam conversion, image processing, optical trapping, and optical communications.
超表面作为超材料的二维(2D)形式,因其在操纵光的振幅、相位和偏振方面的革命性能力而备受关注。作为最重要的超表面类型之一,几何超表面由于所产生的相位分布的几何性质,为控制光学相位分布提供了一个通用平台。然而,设计用于实现自旋可切换功能的几何超表面仍然是一个巨大的挑战,因为一旦入射光束的手性被切换,具有转换自旋的所产生的相位分布就会反转。在此,我们提出并通过实验证明了基于固有手性等离子体阶梯状纳米孔径的手性几何超表面,其在透射中具有同时高的圆二色性(CDT)和透射光中的大交叉偏振比(CPR),以展现自旋控制的波前整形能力。手性几何超表面是通过将阶梯状纳米孔径的两种对映体的两个独立设计的子阵列合并而构建的。在特定的入射手性下,允许来自一个子阵列的透射,而强烈禁止来自另一个子阵列的透射。然后合并后的超表面仅呈现具有一个子阵列相位分布的透射信号,该信号可以通过改变入射手性来切换。基于手性几何超表面,实验上实现了手性超表面全息图和混合阶庞加莱球光束的自旋相关生成。我们的方法有望在用于复杂光束转换、图像处理、光学捕获和光通信的自旋控制超表面器件中得到进一步应用。