Institute of Genetics, Technische Universität Dresden, 01062, Dresden, Germany.
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany.
Nat Commun. 2018 Nov 5;9(1):4620. doi: 10.1038/s41467-018-06497-3.
Epithelial folding transforms simple sheets of cells into complex three-dimensional tissues and organs during animal development. Epithelial folding has mainly been attributed to mechanical forces generated by an apically localized actomyosin network, however, contributions of forces generated at basal and lateral cell surfaces remain largely unknown. Here we show that a local decrease of basal tension and an increased lateral tension, but not apical constriction, drive the formation of two neighboring folds in developing Drosophila wing imaginal discs. Spatially defined reduction of extracellular matrix density results in local decrease of basal tension in the first fold; fluctuations in F-actin lead to increased lateral tension in the second fold. Simulations using a 3D vertex model show that the two distinct mechanisms can drive epithelial folding. Our combination of lateral and basal tension measurements with a mechanical tissue model reveals how simple modulations of surface and edge tension drive complex three-dimensional morphological changes.
在动物发育过程中,上皮折叠将简单的细胞层转化为复杂的三维组织和器官。上皮折叠主要归因于由顶端局部肌动球蛋白网络产生的机械力,然而,基底和侧向细胞表面产生的力的贡献在很大程度上仍然未知。在这里,我们表明,局部基底张力的降低和侧向张力的增加(而不是顶端收缩)驱动了发育中的果蝇翅膀 imaginal 盘的两个相邻褶皱的形成。细胞外基质密度的空间限定降低导致第一个褶皱中的基底张力局部降低;F-肌动蛋白的波动导致第二个褶皱中的侧向张力增加。使用 3D 顶点模型的模拟表明,这两种不同的机制可以驱动上皮折叠。我们结合侧向和基底张力测量以及机械组织模型,揭示了如何通过简单调节表面和边缘张力来驱动复杂的三维形态变化。