Ban Yalong, Niu Xiaoji, Zhang Tisheng, Zhang Quan, Liu Jingnan
GNSS Research Center, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.
Collaborative Innovation Center of Geospatial Technology, 129 Luoyu Road, Wuhan 430079, China.
Micromachines (Basel). 2017 Sep 8;8(9):272. doi: 10.3390/mi8090272.
To meet the requirements of global navigation satellite systems (GNSS) precision applications in high dynamics, this paper describes a study on the carrier phase tracking technology of the GNSS/inertial navigation system (INS) deep integration system. The error propagation models of INS-aided carrier tracking loops are modeled in detail in high dynamics. Additionally, quantitative analysis of carrier phase tracking errors caused by INS error sources is carried out under the uniform high dynamic linear acceleration motion of 100 g. Results show that the major INS error sources, affecting the carrier phase tracking accuracy in high dynamics, include initial attitude errors, accelerometer scale factors, gyro noise and gyro g-sensitivity errors. The initial attitude errors are usually combined with the receiver acceleration to impact the tracking loop performance, which can easily cause the failure of carrier phase tracking. The main INS error factors vary with the vehicle motion direction and the relative position of the receiver and the satellites. The analysis results also indicate that the low-cost micro-electro mechanical system (MEMS) inertial measurement units (IMU) has the ability to maintain GNSS carrier phase tracking in high dynamics.
为满足全球导航卫星系统(GNSS)在高动态环境下精密应用的需求,本文开展了对GNSS/惯性导航系统(INS)深度集成系统载波相位跟踪技术的研究。详细建立了高动态环境下INS辅助载波跟踪环的误差传播模型。此外,在100g的均匀高动态线性加速运动下,对INS误差源引起的载波相位跟踪误差进行了定量分析。结果表明,在高动态环境下影响载波相位跟踪精度的主要INS误差源包括初始姿态误差、加速度计比例因子、陀螺噪声和陀螺重力敏感误差。初始姿态误差通常与接收机加速度相结合,影响跟踪环性能,容易导致载波相位跟踪失败。主要的INS误差因素随载体运动方向以及接收机与卫星的相对位置而变化。分析结果还表明,低成本的微机电系统(MEMS)惯性测量单元(IMU)具备在高动态环境下维持GNSS载波相位跟踪的能力。