Key Laboratory of Photovoltaic Materials of Henan Province and School of Physics & Electronics , Henan University , Kaifeng 475004 , P. R. China.
School of Materials , Sun Yat-sen University , Guangzhou 510275 , P. R. China.
ACS Appl Mater Interfaces. 2018 Dec 5;10(48):41802-41813. doi: 10.1021/acsami.8b16319. Epub 2018 Nov 19.
As candidates for high-energy density cathodes, lithium-rich (Li-rich) layered materials have attracted wide interest for next-generation Li-ion batteries. In this work, surface functionalization of a typical Li-rich material LiMnNiCoO is optimized by fluorine (F)-doped LiSnO coating layer and electrochemical performances are also enhanced accordingly. The results demonstrate that F-doped LiSnO-modified material exhibits the highest capacity retention (73% after 200 cycles), with approximately 1.2, 1.4, and 1.5 times of discharge capacity for LiSnO surface-modified, F-doped, and pristine electrodes, respectively. To reveal the fundamental enhancement mechanism, intensive surface Li diffusion kinetics, postmortem structural characteristics, and aging tests are performed for four sample systems. The results show that the integrated coating layer plays an important role in addressing interface compatibility, not only limited in stabilizing the bulk structure and suppressing side reactions, synergistically contributing to the performance enhancement for the active electrodes. These findings not only pave the way to commercial application of the Li-rich material but also shed new light on surface modification in batteries and other energy storage fields.
作为高能密度阴极的候选材料,富锂(Li-rich)层状材料因其在下一代锂离子电池中的应用而受到广泛关注。在这项工作中,通过氟(F)掺杂的 LiSnO 涂层对典型富锂材料 LiMnNiCoO 进行了表面功能化优化,相应地也提高了其电化学性能。结果表明,F 掺杂的 LiSnO 修饰材料表现出最高的容量保持率(200 次循环后为 73%),LiSnO 表面修饰、F 掺杂和原始电极的放电容量分别约为其 1.2、1.4 和 1.5 倍。为了揭示基本的增强机制,对四个样品系统进行了密集的表面 Li 扩散动力学、后处理结构特征和老化测试。结果表明,综合涂层在解决界面兼容性方面起着重要作用,不仅限于稳定体相结构和抑制副反应,还协同促进了活性电极性能的提高。这些发现不仅为富锂材料的商业应用铺平了道路,而且为电池和其他储能领域的表面修饰提供了新的思路。