Suppr超能文献

评估不同的脑脊髓液和白质 fMRI 滤波策略-量化噪声去除和神经信号保留。

Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation.

机构信息

CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.

First Department of Neurology, Faculty of Medicine of the Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.

出版信息

Hum Brain Mapp. 2019 Mar;40(4):1114-1138. doi: 10.1002/hbm.24433. Epub 2018 Nov 7.

Abstract

This study examines the impact of using different cerebrospinal fluid (CSF) and white matter (WM) nuisance signals for data-driven filtering of functional magnetic resonance imaging (fMRI) data as a cleanup method before analyzing intrinsic brain fluctuations. The routinely used temporal signal-to-noise ratio metric is inappropriate for assessing fMRI filtering suitability, as it evaluates only the reduction of data variability and does not assess the preservation of signals of interest. We defined a new metric that evaluates the preservation of selected neural signal correlates, and we compared its performance with a recently published signal-noise separation metric. These two methods provided converging evidence of the unfavorable impact of commonly used filtering approaches that exploit higher numbers of principal components from CSF and WM compartments (typically 5 + 5 for CSF and WM, respectively). When using only the principal components as nuisance signals, using a lower number of signals results in a better performance (i.e., 1 + 1 performed best). However, there was evidence that this routinely used approach consisting of 1 + 1 principal components may not be optimal for filtering resting-state (RS) fMRI data, especially when RETROICOR filtering is applied during the data preprocessing. The evaluation of task data indicated the appropriateness of 1 + 1 principal components, but when RETROICOR was applied, there was a change in the optimal filtering strategy. The suggested change for extracting WM (and also CSF in RETROICOR-corrected RS data) is using local signals instead of extracting signals from a large mask using principal component analysis.

摘要

本研究考察了在分析内在脑波动之前,使用不同的脑脊髓液(CSF)和白质(WM)噪声信号作为数据驱动的功能磁共振成像(fMRI)数据滤波的清理方法对其的影响。常规使用的时频信号比(temporal signal-to-noise ratio,tSNR)度量不适用于评估 fMRI 滤波适用性,因为它仅评估数据变异性的降低,而不评估感兴趣信号的保留情况。我们定义了一个新的度量标准,用于评估所选神经信号相关性的保留情况,并将其性能与最近发表的信号噪声分离度量标准进行了比较。这两种方法提供了一致的证据,证明了利用 CSF 和 WM 隔室中的更多主成分(通常 CSF 和 WM 分别为 5+5)的常用滤波方法具有不利影响。当仅将主成分用作噪声信号时,使用较少的信号会产生更好的性能(即,1+1 表现最佳)。然而,有证据表明,这种由 1+1 主成分组成的常规方法可能不是过滤静息态(RS)fMRI 数据的最佳方法,尤其是在数据预处理过程中应用 RETROICOR 滤波时。对任务数据的评估表明 1+1 主成分是合适的,但当应用 RETROICOR 时,最佳滤波策略发生了变化。建议用于提取 WM(以及在 RETROICOR 校正的 RS 数据中也提取 CSF)的更改是使用局部信号而不是使用主成分分析从大掩模中提取信号。

相似文献

3
A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity.
Magn Reson Imaging. 2022 Jan;85:228-250. doi: 10.1016/j.mri.2021.10.028. Epub 2021 Oct 27.
5
Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
Neuroimage. 2015 Aug 15;117:67-79. doi: 10.1016/j.neuroimage.2015.05.015. Epub 2015 May 15.
6
An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
Neuroimage. 2018 May 1;171:415-436. doi: 10.1016/j.neuroimage.2017.12.073. Epub 2017 Dec 24.
7
Evaluation of nuisance removal for functional MRI of rodent brain.
Neuroimage. 2019 Mar;188:694-709. doi: 10.1016/j.neuroimage.2018.12.048. Epub 2018 Dec 26.
8
Sensitivity of PPI analysis to differences in noise reduction strategies.
J Neurosci Methods. 2015 Sep 30;253:218-32. doi: 10.1016/j.jneumeth.2015.06.021. Epub 2015 Jul 8.
10
A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.
Neuroimage. 2007 Aug 1;37(1):90-101. doi: 10.1016/j.neuroimage.2007.04.042. Epub 2007 May 3.

引用本文的文献

2
Dopaminergic processes predict temporal distortions in event memory.
bioRxiv. 2025 May 18:2025.05.14.654133. doi: 10.1101/2025.05.14.654133.
4
Locus coeruleus activation 'resets' hippocampal event representations and separates adjacent memories.
bioRxiv. 2024 Aug 18:2024.08.15.608148. doi: 10.1101/2024.08.15.608148.
5
Cholinergic modulation supports dynamic switching of resting state networks through selective DMN suppression.
PLoS Comput Biol. 2024 Jun 6;20(6):e1012099. doi: 10.1371/journal.pcbi.1012099. eCollection 2024 Jun.
7
Comparing data-driven physiological denoising approaches for resting-state fMRI: implications for the study of aging.
Front Neurosci. 2024 Feb 6;18:1223230. doi: 10.3389/fnins.2024.1223230. eCollection 2024.
9
Impact of sample size and regression of tissue-specific signals on effective connectivity within the core default mode network.
Hum Brain Mapp. 2023 Dec 1;44(17):5858-5870. doi: 10.1002/hbm.26481. Epub 2023 Sep 15.
10
Functional neuroanatomy of reading in Czech: Evidence of a dual-route processing architecture in a shallow orthography.
Front Psychol. 2023 Jan 16;13:1037365. doi: 10.3389/fpsyg.2022.1037365. eCollection 2022.

本文引用的文献

1
White-matter functional networks changes in patients with schizophrenia.
Neuroimage. 2019 Apr 15;190:172-181. doi: 10.1016/j.neuroimage.2018.04.018. Epub 2018 Apr 13.
2
The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI.
Front Comput Neurosci. 2018 Feb 13;12:8. doi: 10.3389/fncom.2018.00008. eCollection 2018.
3
Brain Network Modularity Predicts Exercise-Related Executive Function Gains in Older Adults.
Front Aging Neurosci. 2018 Jan 4;9:426. doi: 10.3389/fnagi.2017.00426. eCollection 2017.
4
Detection of synchronous brain activity in white matter tracts at rest and under functional loading.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):595-600. doi: 10.1073/pnas.1711567115. Epub 2017 Dec 27.
5
Intrinsic functional connectivity of the central extended amygdala.
Hum Brain Mapp. 2018 Mar;39(3):1291-1312. doi: 10.1002/hbm.23917. Epub 2017 Dec 12.
7
Influence of physiological noise on accelerated 2D and 3D resting state functional MRI data at 7 T.
Magn Reson Med. 2017 Sep;78(3):888-896. doi: 10.1002/mrm.26823. Epub 2017 Jul 7.
8
Evidence for Functional Networks within the Human Brain's White Matter.
J Neurosci. 2017 Jul 5;37(27):6394-6407. doi: 10.1523/JNEUROSCI.3872-16.2017. Epub 2017 May 25.
9
Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions.
PLoS One. 2017 Mar 21;12(3):e0173289. doi: 10.1371/journal.pone.0173289. eCollection 2017.
10
Methods for cleaning the BOLD fMRI signal.
Neuroimage. 2017 Jul 1;154:128-149. doi: 10.1016/j.neuroimage.2016.12.018. Epub 2016 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验