CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
First Department of Neurology, Faculty of Medicine of the Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
Hum Brain Mapp. 2019 Mar;40(4):1114-1138. doi: 10.1002/hbm.24433. Epub 2018 Nov 7.
This study examines the impact of using different cerebrospinal fluid (CSF) and white matter (WM) nuisance signals for data-driven filtering of functional magnetic resonance imaging (fMRI) data as a cleanup method before analyzing intrinsic brain fluctuations. The routinely used temporal signal-to-noise ratio metric is inappropriate for assessing fMRI filtering suitability, as it evaluates only the reduction of data variability and does not assess the preservation of signals of interest. We defined a new metric that evaluates the preservation of selected neural signal correlates, and we compared its performance with a recently published signal-noise separation metric. These two methods provided converging evidence of the unfavorable impact of commonly used filtering approaches that exploit higher numbers of principal components from CSF and WM compartments (typically 5 + 5 for CSF and WM, respectively). When using only the principal components as nuisance signals, using a lower number of signals results in a better performance (i.e., 1 + 1 performed best). However, there was evidence that this routinely used approach consisting of 1 + 1 principal components may not be optimal for filtering resting-state (RS) fMRI data, especially when RETROICOR filtering is applied during the data preprocessing. The evaluation of task data indicated the appropriateness of 1 + 1 principal components, but when RETROICOR was applied, there was a change in the optimal filtering strategy. The suggested change for extracting WM (and also CSF in RETROICOR-corrected RS data) is using local signals instead of extracting signals from a large mask using principal component analysis.
本研究考察了在分析内在脑波动之前,使用不同的脑脊髓液(CSF)和白质(WM)噪声信号作为数据驱动的功能磁共振成像(fMRI)数据滤波的清理方法对其的影响。常规使用的时频信号比(temporal signal-to-noise ratio,tSNR)度量不适用于评估 fMRI 滤波适用性,因为它仅评估数据变异性的降低,而不评估感兴趣信号的保留情况。我们定义了一个新的度量标准,用于评估所选神经信号相关性的保留情况,并将其性能与最近发表的信号噪声分离度量标准进行了比较。这两种方法提供了一致的证据,证明了利用 CSF 和 WM 隔室中的更多主成分(通常 CSF 和 WM 分别为 5+5)的常用滤波方法具有不利影响。当仅将主成分用作噪声信号时,使用较少的信号会产生更好的性能(即,1+1 表现最佳)。然而,有证据表明,这种由 1+1 主成分组成的常规方法可能不是过滤静息态(RS)fMRI 数据的最佳方法,尤其是在数据预处理过程中应用 RETROICOR 滤波时。对任务数据的评估表明 1+1 主成分是合适的,但当应用 RETROICOR 时,最佳滤波策略发生了变化。建议用于提取 WM(以及在 RETROICOR 校正的 RS 数据中也提取 CSF)的更改是使用局部信号而不是使用主成分分析从大掩模中提取信号。