Suppr超能文献

基于 TDNN 的增强系统中 GNSS 信号异常行为检测的改进。

Improvement of Anomalous Behavior Detection of GNSS Signal Based on TDNN for Augmentation Systems.

机构信息

Department of Internet of Things, Soonchunhyang University, Asan 31538, Korea.

Department of Electrical Engineering, Soonchunhyang University, Asan 31538, Korea.

出版信息

Sensors (Basel). 2018 Nov 6;18(11):3800. doi: 10.3390/s18113800.

Abstract

The reliability of a navigation system is crucial for navigation purposes, especially in areas where stringent performance is required, such as civil aviation or intelligent transportation systems (ITSs). Therefore, integrity monitoring is an inseparable part of safety-critical navigation applications. The receiver autonomous integrity monitor (RAIM) has been used with the global navigation satellite system (GNSS) to provide integrity monitoring within avionics itself, such as in civil aviation for lateral navigation (LNAV) or the non-precision approach (NPA). However, standard RAIM may not meet the stricter aviation availability and integrity requirements for certain operations, e.g., precision approach flight phases, and also is not sufficient for on-ground vehicle integrity monitoring of several specific ITS applications. One possible way to more clearly distinguish anomalies in observed GNSS signals is to take advantage of time-delayed neural networks (TDNNs) to estimate useful information about the faulty characteristics, rather than simply using RAIM alone. Based on the performance evaluation, it was determined that this method can reliably detect flaws in navigation satellites significantly faster than RAIM alone, and it was confirmed that TDNN-based integrity monitoring using RAIM is an encouraging alternative to improve the integrity assurance level of RAIM in terms of GNSS anomaly detection.

摘要

导航系统的可靠性对于导航目的至关重要,特别是在需要严格性能的领域,如民用航空或智能交通系统(ITSs)。因此,完整性监测是安全关键型导航应用中不可或缺的一部分。接收机自主完整性监测(RAIM)已与全球导航卫星系统(GNSS)一起用于为航空电子设备本身提供完整性监测,例如在民用航空中用于横向导航(LNAV)或非精密进近(NPA)。然而,标准 RAIM 可能无法满足某些操作的更严格的航空可用性和完整性要求,例如精密进近飞行阶段,并且对于特定 ITS 应用的地面车辆完整性监测也不够充分。一种更清楚地区分观测到的 GNSS 信号异常的可能方法是利用时滞神经网络(TDNN)来估计有关故障特征的有用信息,而不仅仅是简单地单独使用 RAIM。基于性能评估,确定该方法可以比单独使用 RAIM 更快地可靠地检测导航卫星中的缺陷,并且已经确认使用 RAIM 的基于 TDNN 的完整性监测是一种有希望的替代方法,可以提高 RAIM 在 GNSS 异常检测方面的完整性保证水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验