Suppr超能文献

微通道中气相纳米升液滴的高压加速

High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel.

作者信息

Kazoe Yutaka, Yamashiro Ippei, Mawatari Kazuma, Kitamori Takehiko

机构信息

Department of Hemolysis and Apheresis, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.

Deparment of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.

出版信息

Micromachines (Basel). 2016 Aug 15;7(8):142. doi: 10.3390/mi7080142.

Abstract

Microfluidics has been used to perform various chemical operations for pL⁻nL volumes of samples, such as mixing, reaction and separation, by exploiting diffusion, viscous forces, and surface tension, which are dominant in spaces with dimensions on the micrometer scale. To further develop this field, we previously developed a novel microfluidic device, termed a microdroplet collider, which exploits spatially and temporally localized kinetic energy. This device accelerates a microdroplet in the gas phase along a microchannel until it collides with a target. We demonstrated 6000-fold faster mixing compared to mixing by diffusion; however, the droplet acceleration was not optimized, because the experiments were conducted for only one droplet size and at pressures in the 10⁻100 kPa range. In this study, we investigated the acceleration of a microdroplet using a high-pressure (MPa) control system, in order to achieve higher acceleration and kinetic energy. The motion of the nL droplet was observed using a high-speed complementary metal oxide semiconductor (CMOS) camera. A maximum droplet velocity of ~5 m/s was achieved at a pressure of 1⁻2 MPa. Despite the higher fluid resistance, longer droplets yielded higher acceleration and kinetic energy, because droplet splitting was a determining factor in the acceleration and using a longer droplet helped prevent it. The results provide design guidelines for achieving higher kinetic energies in the microdroplet collider for various microfluidic applications.

摘要

微流控技术已被用于对皮升至纳升体积的样品进行各种化学操作,如混合、反应和分离,通过利用在微米尺度空间中占主导地位的扩散、粘性力和表面张力。为了进一步发展该领域,我们之前开发了一种新型微流控装置,称为微滴碰撞器,它利用空间和时间上局部化的动能。该装置使气相中的微滴沿着微通道加速,直到它与目标物碰撞。我们证明,与通过扩散混合相比,混合速度快了6000倍;然而,液滴加速并未得到优化,因为实验仅针对一种液滴尺寸且在10⁻100 kPa的压力范围内进行。在本研究中,我们使用高压(兆帕)控制系统研究了微滴的加速,以实现更高的加速度和动能。使用高速互补金属氧化物半导体(CMOS)相机观察纳升液滴的运动。在1⁻2 MPa的压力下,液滴的最大速度达到约5 m/s。尽管流体阻力更高,但更长的液滴产生了更高的加速度和动能,因为液滴分裂是加速过程中的一个决定性因素,使用更长的液滴有助于防止液滴分裂。这些结果为在微滴碰撞器中实现更高动能以用于各种微流控应用提供了设计指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e323/6190114/9bdda20d7356/micromachines-07-00142-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验