Suppr超能文献

修复人工老化 CAD-CAM 复合树脂的粘结强度和纳米渗漏。

Repair bond strength and nanoleakage of artificially aged CAD-CAM composite resin.

机构信息

Doctoral student, Area of Stomatology, Health Sciences Faculty, Rey Juan Carlos University, Alcorcón, Madrid, Spain.

Associate Professor, Area of Stomatology, Health Sciences Faculty, Rey Juan Carlos University, Alcorcón, Madrid, Spain.

出版信息

J Prosthet Dent. 2019 Mar;121(3):523-530. doi: 10.1016/j.prosdent.2018.05.013. Epub 2018 Nov 6.

Abstract

STATEMENT OF PROBLEM

The polymerization of computer-aided design and computer-aided manufacturing (CAD-CAM) composite resins during their manufacture enhances their physical properties and biocompatibility but might compromise their reparability.

PURPOSE

The purpose of this in vitro study was to determine the microtensile bond strength and nanoleakage (NL) of aged LAVA Ultimate (LU) CAD-CAM composite resin after different repair protocols.

MATERIAL AND METHODS

Fifty-eight LU miniblocks were prepared, thermocycled (10000 cycles, 5°C to 55°C), and assigned to 10 surface pretreatment and bonding protocols: (1) tribochemical silica coating (CoJet, CoJet Sand; 3M ESPE)+Scotchbond Universal Adhesive (SBU; 3M ESPE); (2) CoJet+silane (SI, ESPE Sil; 3M ESPE)+Adper Scotchbond 1 XT Adhesive (XT; 3M ESPE); (3) CoJet+10-methacryloyloxydecyl dihydrogen phosphate-based silane (MO; Monobond Plus; Ivoclar Vivadent AG)+XT; (4) CoJet+XT; (5) 30-μm alumina airborne-particle abrasion (AL)+SBU; (6) AL+SI+XT; (7) AL+MO+XT; (8) AL+XT; (9) no pretreatment+SBU; and (10) no pretreatment+XT. All blocks were repaired using the Filtek Supreme XTE (3M ESPE) composite resin. Stick-shaped specimens (0.9×0.9 mm) were obtained and submitted to microtensile bond strength (μTBS) and %NL testing after 24 hours. μTBS data were analyzed with 1-way ANOVA, followed by the Tukey post hoc test, and NL data with nonparametric Kruskal-Wallis and Dunn tests (α=.05).

RESULTS

For μTBS, CoJet, and AL pretreatments showed significantly higher mean μTBS, especially when used together with SBU. No pretreatment+XT yielded the lowest mean μTBS. For NL, marginal sealing improved significantly after the use of SBU regardless of the surface treatment. This improvement was only statistically different after tribochemical silica coating.

CONCLUSIONS

Airborne-particle abrasion with alumina particles, silica coated or not, together with the application of SBU resulted in the highest mean μTBS. The lowest %NL was recorded when aged LU blocks were repaired using SBU.

摘要

问题陈述

计算机辅助设计和计算机辅助制造(CAD-CAM)复合材料在制造过程中的聚合增强了它们的物理性能和生物相容性,但可能会影响其可修复性。

目的

本体外研究的目的是确定不同修复方案后 LAVA Ultimate(LU)CAD-CAM 复合树脂的微拉伸结合强度和纳米渗漏(NL)。

材料和方法

制备 58 个 LU 小块,热循环(10000 次,5°C 至 55°C),并分为 10 种表面预处理和粘结方案:(1) 机械化学硅涂层(CoJet,CoJet Sand;3M ESPE)+Scotchbond Universal Adhesive(SBU;3M ESPE);(2) CoJet+硅烷(SI,ESPE Sil;3M ESPE)+Adper Scotchbond 1 XT 粘合剂(XT;3M ESPE);(3) CoJet+基于 10-甲丙烯酰氧基癸基二氢磷酸的硅烷(MO;Monobond Plus;Ivoclar Vivadent AG)+XT;(4) CoJet+XT;(5)30μm 氧化铝空气动力喷砂(AL)+SBU;(6)AL+SI+XT;(7)AL+MO+XT;(8)AL+XT;(9)无预处理+SBU;和(10)无预处理+XT。所有块均使用 Filtek Supreme XTE(3M ESPE)复合树脂修复。获得棒状试件(0.9×0.9mm),并在 24 小时后进行微拉伸结合强度(μTBS)和%NL 测试。使用单因素方差分析分析 μTBS 数据,然后使用 Tukey 事后检验,使用非参数 Kruskal-Wallis 和 Dunn 检验分析 NL 数据(α=0.05)。

结果

对于 μTBS,CoJet 和 AL 预处理的平均 μTBS 明显更高,尤其是与 SBU 一起使用时。无预处理+XT 产生的平均 μTBS 最低。对于 NL,使用 SBU 后边缘密封显著改善,无论表面处理如何。这种改进仅在使用机械化学硅涂层后在统计学上有显著差异。

结论

使用氧化铝颗粒进行空气动力喷砂,无论是否进行硅涂层处理,再加上 SBU 的应用,可获得最高的平均 μTBS。当使用 SBU 修复老化的 LU 块时,记录到最低的%NL。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验