Suppr超能文献

基于信息的边界平衡生成对抗网络与可解释的表示学习。

Information-Based Boundary Equilibrium Generative Adversarial Networks with Interpretable Representation Learning.

机构信息

Industrial Engineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul 08826, Republic of Korea.

出版信息

Comput Intell Neurosci. 2018 Oct 17;2018:6465949. doi: 10.1155/2018/6465949. eCollection 2018.

Abstract

This paper describes a new image generation algorithm based on generative adversarial network. With an information-theoretic extension to the autoencoder-based discriminator, this new algorithm is able to learn interpretable representations from the input images. Our model not only adversarially minimizes the Wasserstein distance-based losses of the discriminator and generator but also maximizes the mutual information between small subset of the latent variables and the observation. We also train our model with proportional control theory to keep the equilibrium between the discriminator and the generator balanced, and as a result, our generative adversarial network can mitigate the convergence problem. Through the experiments on real images, we validate our proposed method, which can manipulate the generated images as desired by controlling the latent codes of input variables. In addition, the visual qualities of produced images are effectively maintained, and the model can stably converge to the equilibrium. However, our model has a difficulty in learning disentangling factors because our model does not regularize the independence between the interpretable factors. Therefore, in the future, we will develop a generative model that can learn disentangling factors.

摘要

本文描述了一种基于生成对抗网络的新图像生成算法。通过对基于自动编码器的判别器进行信息论扩展,该新算法能够从输入图像中学习可解释的表示。我们的模型不仅通过对抗最小化判别器和生成器的基于 Wasserstein 距离的损失,还通过最大化小部分潜在变量和观测之间的互信息来最大化。我们还使用比例控制理论来训练我们的模型,以保持判别器和生成器之间的平衡,因此,我们的生成对抗网络可以缓解收敛问题。通过对真实图像的实验,我们验证了我们提出的方法,该方法可以通过控制输入变量的潜在代码来操纵所需的生成图像。此外,产生的图像的视觉质量得到有效保持,并且模型可以稳定地收敛到平衡。但是,我们的模型在学习解耦因素方面存在困难,因为我们的模型没有对可解释因素之间的独立性进行正则化。因此,在未来,我们将开发一种能够学习解耦因素的生成模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验