1 Department of Biology, and.
2 Nutrition Obesity Research Center, University of Alabama at Birmingham, 1300 University Blvd., Birmingham 35294, U.S.A.
Mol Plant Microbe Interact. 2019 Jan;32(1):45-55. doi: 10.1094/MPMI-08-18-0221-FI. Epub 2018 Nov 12.
Systems biology is an inclusive approach to study the static and dynamic emergent properties on a global scale by integrating multiomics datasets to establish qualitative and quantitative associations among multiple biological components. With an abundance of improved high throughput -omics datasets, network-based analyses and machine learning technologies are playing a pivotal role in comprehensive understanding of biological systems. Network topological features reveal most important nodes within a network as well as prioritize significant molecular components for diverse biological networks, including coexpression, protein-protein interaction, and gene regulatory networks. Machine learning techniques provide enormous predictive power through specific feature extraction from biological data. Deep learning, a subtype of machine learning, has plausible future applications because a domain expert for feature extraction is not needed in this algorithm. Inspired by diverse domains of biology, we here review classic systems biology techniques applied in plant immunity thus far. We also discuss additional advanced approaches in both graph theory and machine learning, which may provide new insights for understanding plant-microbe interactions. Finally, we propose a hybrid approach in plant immune systems that harnesses the power of both network biology and machine learning, with a potential to be applicable to both model systems and agronomically important crop plants.
系统生物学是一种综合的方法,通过整合多组学数据集来研究全局范围内的静态和动态涌现特性,从而建立多个生物学成分之间的定性和定量关联。随着大量改进的高通量组学数据集的出现,基于网络的分析和机器学习技术在全面理解生物系统方面发挥着关键作用。网络拓扑特征揭示了网络中最重要的节点以及优先考虑的重要分子成分,适用于多种生物网络,包括共表达、蛋白质-蛋白质相互作用和基因调控网络。机器学习技术通过从生物数据中提取特定特征提供了巨大的预测能力。深度学习是机器学习的一个子类,由于该算法不需要领域专家进行特征提取,因此具有合理的未来应用前景。受生物学不同领域的启发,我们在这里回顾了迄今为止应用于植物免疫的经典系统生物学技术。我们还讨论了图论和机器学习中其他先进的方法,这些方法可能为理解植物-微生物相互作用提供新的见解。最后,我们提出了一种植物免疫系统的混合方法,利用网络生物学和机器学习的力量,有可能适用于模型系统和农业上重要的作物植物。