Suppr超能文献

使用最大化能量目标纠正螺旋、重入/重出(RIO)采集的图像模糊。

Correcting image blur in spiral, retraced in/out (RIO) acquisitions using a maximized energy objective.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia.

Department of Imaging Science and Innovation, Geisinger, Danville, Pennsylvania.

出版信息

Magn Reson Med. 2019 Mar;81(3):1806-1817. doi: 10.1002/mrm.27541. Epub 2018 Nov 13.

Abstract

PURPOSE

Images acquired with spiral k-space trajectories can suffer from off-resonance image blur. Previous work showed that averaging 2 images acquired with a retraced, in/out (RIO) trajectory self-corrects image blur so long as off-resonant spins accrue less than 1 half-cycle of relative phase over the readout. Practical scenarios frequently exceed this threshold. Here, we derive and characterize a more-robust off-resonance image blur correction method for RIO acquisitions.

METHODS

Phantom and human volunteer data were acquired using a RIO trajectory with readout durations ranging from 4 to 60 ms. The resulting images were deblurred using 3 candidate methods: conventional linear correction of the component images; semiautomatic deblurring of the component images using an established minimized phase objective function; and semiautomatic deblurring of the average of the component images using a maximized energy objective function, derived below. Deblurring errors were estimated relative to images acquired with 4 ms readouts.

RESULTS

All 3 methods converged to similar solutions in cases where less than 2 and 4 cycles of phase accrued over the readout in in vivo and phantom images, respectively (<13 ms readout at 3T). Above this threshold, the linear and minimized phase methods introduced several errors. The maximized energy function provided accurate deblurring so long as less than 6 and 10 cycles of phase accrued over the readout in in vivo and phantom images, respectively (<34 ms readout at 3T).

CONCLUSION

The maximized energy objective function can accurately deblur RIO acquisitions over a wide spectrum of off resonance frequencies.

摘要

目的

采用螺旋 k 空间轨迹采集的图像可能会出现离频图像模糊。先前的研究表明,只要在读取过程中离频自旋积累的相对相位不超过 1 个半周期,对采用重绕、内外(RIO)轨迹采集的 2 幅图像进行平均,就可以自我校正图像模糊。然而,实际情况经常会超过这个阈值。在此,我们为 RIO 采集推导并描述了一种更稳健的离频图像模糊校正方法。

方法

采用 RIO 轨迹采集了包括体模和志愿者在内的数据,其读取时间从 4 毫秒到 60 毫秒不等。使用 3 种候选方法对所采集的图像进行去模糊处理:对分量图像进行常规线性校正;使用既定的最小相位目标函数对分量图像进行半自动去模糊;以及使用下面推导得出的最大化能量目标函数对分量图像的平均值进行半自动去模糊。与采集 4 毫秒读取时间的图像相比,对图像进行了去模糊误差的评估。

结果

在体内和体模图像中,分别当读取时间小于 2 个和 4 个周期的相位时(3T 下小于 13 毫秒的读取时间),所有 3 种方法都收敛到相似的解。当超过这个阈值时,线性和最小相位方法会引入几个误差。只要在体内和体模图像中,读取时间分别小于 6 个和 10 个周期的相位(3T 下小于 34 毫秒的读取时间),最大化能量函数就可以提供准确的去模糊处理。

结论

最大化能量目标函数可以在广泛的离频频率范围内准确地对 RIO 采集进行去模糊处理。

相似文献

1
Correcting image blur in spiral, retraced in/out (RIO) acquisitions using a maximized energy objective.
Magn Reson Med. 2019 Mar;81(3):1806-1817. doi: 10.1002/mrm.27541. Epub 2018 Nov 13.
2
SPRING-RIO TSE: 2D T -Weighted Turbo Spin-Echo brain imaging using SPiral RINGs with retraced in/out trajectories.
Magn Reson Med. 2022 Aug;88(2):601-616. doi: 10.1002/mrm.29210. Epub 2022 Apr 8.
4
Multi-frequency interpolation in spiral magnetic resonance fingerprinting for correction of off-resonance blurring.
Magn Reson Imaging. 2017 Sep;41:63-72. doi: 10.1016/j.mri.2017.07.004. Epub 2017 Jul 8.
5
Correction of B eddy current effects in spiral MRI.
Magn Reson Med. 2019 Apr;81(4):2501-2513. doi: 10.1002/mrm.27583. Epub 2018 Nov 16.
6
Deblurring for spiral real-time MRI using convolutional neural networks.
Magn Reson Med. 2020 Dec;84(6):3438-3452. doi: 10.1002/mrm.28393. Epub 2020 Jul 25.
7
Multifrequency interpolation for fast off-resonance correction.
Magn Reson Med. 1997 May;37(5):785-92. doi: 10.1002/mrm.1910370523.
8
Automatic off-resonance correction in spiral imaging with piecewise linear autofocus.
Magn Reson Med. 2013 Jan;69(1):82-90. doi: 10.1002/mrm.24230. Epub 2012 Mar 27.
9
Practical implications of motion correction with motion insensitive radial k-space acquisitions in MRI.
Br J Radiol. 2018 Jul;91(1087):20170593. doi: 10.1259/bjr.20170593. Epub 2018 Mar 23.
10
B mapping using rewinding trajectories (BMART).
Magn Reson Med. 2017 Aug;78(2):664-669. doi: 10.1002/mrm.26391. Epub 2016 Aug 24.

引用本文的文献

1
A retraced spiral strategy with semi-automatic deblurring for volumetric thermometry.
Magn Reson Med. 2025 Oct;94(4):1432-1444. doi: 10.1002/mrm.30560. Epub 2025 May 20.
2
Real-time water/fat imaging at 0.55T with spiral out-in-out-in sampling.
Magn Reson Med. 2024 Feb;91(2):649-659. doi: 10.1002/mrm.29885. Epub 2023 Oct 10.
3
Concomitant magnetic-field compensation for 2D spiral-ring turbo spin-echo imaging at 0.55T and 1.5T.
Magn Reson Med. 2023 Aug;90(2):552-568. doi: 10.1002/mrm.29663. Epub 2023 Apr 10.
4
SPRING-RIO TSE: 2D T -Weighted Turbo Spin-Echo brain imaging using SPiral RINGs with retraced in/out trajectories.
Magn Reson Med. 2022 Aug;88(2):601-616. doi: 10.1002/mrm.29210. Epub 2022 Apr 8.
5
A preclinical study of diffusion-weighted MRI contrast as an early indicator of thermal ablation.
Magn Reson Med. 2021 Apr;85(4):2145-2159. doi: 10.1002/mrm.28537. Epub 2020 Nov 11.

本文引用的文献

1
A 2D spiral turbo-spin-echo technique.
Magn Reson Med. 2018 Nov;80(5):1989-1996. doi: 10.1002/mrm.27171. Epub 2018 Mar 9.
2
A spiral-based volumetric acquisition for MR temperature imaging.
Magn Reson Med. 2018 Jun;79(6):3122-3127. doi: 10.1002/mrm.26981. Epub 2017 Nov 8.
3
Rapid anatomical brain imaging using spiral acquisition and an expanded signal model.
Neuroimage. 2018 Mar;168:88-100. doi: 10.1016/j.neuroimage.2017.07.062. Epub 2017 Aug 1.
4
B mapping using rewinding trajectories (BMART).
Magn Reson Med. 2017 Aug;78(2):664-669. doi: 10.1002/mrm.26391. Epub 2016 Aug 24.
6
Automatic off-resonance correction in spiral imaging with piecewise linear autofocus.
Magn Reson Med. 2013 Jan;69(1):82-90. doi: 10.1002/mrm.24230. Epub 2012 Mar 27.
7
Realistic analytical phantoms for parallel magnetic resonance imaging.
IEEE Trans Med Imaging. 2012 Mar;31(3):626-36. doi: 10.1109/TMI.2011.2174158. Epub 2011 Oct 28.
9
Spiral demystified.
Magn Reson Imaging. 2010 Jul;28(6):862-81. doi: 10.1016/j.mri.2010.03.036. Epub 2010 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验