Suppr超能文献

(Z)-3-己烯醇的糖基化参与了植物种内相互作用:以茶树为例。

Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: A case study in Camellia sinensis.

机构信息

State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China.

Biotechnology of Natural Products, Technische Universität München, 85354, Freising, Germany.

出版信息

Plant Cell Environ. 2019 Apr;42(4):1352-1367. doi: 10.1111/pce.13479. Epub 2018 Dec 10.

Abstract

Plants emit a variety of volatiles in response to herbivore attack, and (Z)-3-hexenol and its glycosides have been shown to function as defence compounds. Although the ability to incorporate and convert (Z)-3-hexenol to glycosides is widely conserved in plants, the enzymes responsible for the glycosylation of (Z)-3-hexenol remained unknown until today. In this study, uridine-diphosphate-dependent glycosyltransferase (UGT) candidate genes were selected by correlation analysis and their response to airborne (Z)-3-hexenol, which has been shown to be taken up by the tea plant. The allelic proteins UGT85A53-1 and UGT85A53-2 showed the highest activity towards (Z)-3-hexenol and are distinct from UGT85A53-3, which displayed a similar catalytic efficiency for (Z)-3-hexenol and nerol. A single amino acid exchange E59D enhanced the activity towards (Z)-3-hexenol, whereas a L445M mutation reduced the catalytic activity towards all substrates tested. Transient overexpression of CsUGT85A53-1 in tobacco significantly increased the level of (Z)-3-hexenyl glucoside. The functional characterization of CsUGT85A53 as a (Z)-3-hexenol UGT not only provides the foundation for the biotechnological production of (Z)-3-hexenyl glucoside but also delivers insights for the development of novel insect pest control strategies in tea plant and might be generally applicable to other plants.

摘要

植物会针对草食性动物的攻击而释放出各种挥发性物质,其中(Z)-3-己烯醇及其糖苷已被证实具有防御功能。尽管植物广泛具有吸收和将(Z)-3-己烯醇转化为糖苷的能力,但负责(Z)-3-己烯醇糖基化的酶直到今天才被发现。在这项研究中,通过相关分析选择了尿苷二磷酸依赖性糖基转移酶(UGT)候选基因,并研究了它们对空气中(Z)-3-己烯醇的反应,因为已有研究表明茶树会吸收这种物质。等位蛋白 UGT85A53-1 和 UGT85A53-2 对(Z)-3-己烯醇表现出最高的活性,与 UGT85A53-3 不同,后者对(Z)-3-己烯醇和橙花醇具有相似的催化效率。单个氨基酸交换 E59D 增强了对(Z)-3-己烯醇的活性,而 L445M 突变则降低了对所有测试底物的催化活性。在烟草中瞬时过表达 CsUGT85A53-1 显著增加了(Z)-3-己烯基葡萄糖苷的水平。CsUGT85A53 作为(Z)-3-己烯醇 UGT 的功能特征不仅为(Z)-3-己烯基葡萄糖苷的生物技术生产提供了基础,也为茶树新型害虫防治策略的发展提供了思路,并且可能普遍适用于其他植物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验