Suppr超能文献

自动检测发作间期棘波:重新审视简单阈值规则

Automating Interictal Spike Detection: Revisiting A Simple Threshold Rule.

作者信息

Palepu A, Premanathan S, Azhar F, Vendrame M, Loddenkemper T, Reinsberger C, Kreiman G, Parkerson K A, Sarma S, Anderson W S

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:299-302. doi: 10.1109/EMBC.2018.8512244.

Abstract

Interictal spikes (IIS) are bursts of neuronal depolarization observed electrographically between periods of seizure activity in epilepsy patients. However, IISs are difficult to characterize morphologically and their effects on neurophysiology and cognitive function are poorly understood. Currently, IIS detection requires laborious manual assessment and marking of electroencephalography (EEG/iEEG) data. This practice is also subjective as the clinician has to select the mental threshold that EEG activity must exceed in order to be considered a spike. The work presented here details the development and implementation of a simple automated IIS detection algorithm. This preliminary study utilized intracranial EEG recordings collected from 7 epilepsy patients, and IISs were marked by a single physician for a total of 1339 IISs across 68 active electrodes. The proposed algorithm implements a simple threshold rule that scans through iEEG data and identifies IISs using various normalization techniques that eliminate the need for a more complex detector. The efficacy of the algorithm was determined by evaluating the sensitivity and specificity of the detector across a range of thresholds, and an approximate optimal threshold was determined using these results. With an average true positive rate of over 98% and a false positive rate of below 2%, the accuracy of this algorithm speaks to its use as a reliable diagnostic tool to detect IISs, which has direct applications in localizing where seizures start, detecting when seizures start, and in understanding cognitive impairment due to IISs. Furthermore, due to its speed and simplicity, this algorithm can be used for real-time detection of IIS that will ultimately allow physicians to study their clinical implications with high temporal resolution and individual adaptation.

摘要

发作间期棘波(IIS)是癫痫患者在癫痫发作活动期之间通过脑电图观察到的神经元去极化突发。然而,IIS在形态学上难以表征,其对神经生理学和认知功能的影响也知之甚少。目前,IIS检测需要对脑电图(EEG/iEEG)数据进行费力的人工评估和标记。这种做法也是主观的,因为临床医生必须选择脑电图活动必须超过的心理阈值才能被视为一个棘波。本文介绍了一种简单的自动IIS检测算法的开发和实现。这项初步研究利用了从7名癫痫患者收集的颅内脑电图记录,一名医生对68个活跃电极上总共1339个IIS进行了标记。所提出的算法实施了一个简单的阈值规则,该规则扫描iEEG数据并使用各种归一化技术识别IIS,从而无需更复杂的检测器。通过评估检测器在一系列阈值下的灵敏度和特异性来确定算法的有效性,并利用这些结果确定了一个近似的最佳阈值。该算法平均真阳性率超过98%,假阳性率低于2%,其准确性表明它可作为检测IIS的可靠诊断工具,这在癫痫发作起始部位定位、发作起始时间检测以及理解IIS导致的认知障碍方面有直接应用。此外,由于其速度和简单性,该算法可用于IIS的实时检测,最终将使医生能够以高时间分辨率和个体适应性研究其临床意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验