Suppr超能文献

基于前支撑相比目鱼肌肌电信号的摆动相步行速度预测方法

Prediction Method of Walking Speed at Swing Phase using Soleus Electromyogram Signal at Previous Stance Phase.

作者信息

Choi Taejin, Im Chang-Hwan, Kim Seung-Jong, Kim Hyungmin, Lee Jong Min

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2308-2311. doi: 10.1109/EMBC.2018.8512867.

Abstract

A recent research has proposed a prediction method of walking speed with soleus electromyogram (EMG) signal activation level at push-off phase. However, the prediction of walking speed at low speed is inaccurate and the coefficients of determination (R values) of the used linear regression model is low. In this study, we propose a new method for predicting walking speed during swing phase with soleus EMG signal activation levels at pre-load and push-off phases, and square root value is used as a feature. The proposed method is verified by walking experiment with 5 nondisabled subjects. (R values) of the new method is improved by 10.3 % than that of the method used in the previous study. And the proposed method improves accuracy mainly at low speed and precision at high speed to predict a correct walking speed throughout walking speed range. Thus, the proposed method enhances the performance of the prediction model of walking speed without being biased in the range of high or low speed. The proposed method has potential to be used to control the gait speed of a lower-limb exoskeleton according to wearer's gait intention.

摘要

最近的一项研究提出了一种利用比目鱼肌肌电图(EMG)信号在蹬离阶段的激活水平来预测步行速度的方法。然而,低速步行速度的预测不准确,且所使用的线性回归模型的决定系数(R值)较低。在本研究中,我们提出了一种新的方法,利用比目鱼肌EMG信号在预加载和蹬离阶段的激活水平以及平方根值作为特征来预测摆动阶段的步行速度。该方法通过对5名非残疾受试者的步行实验进行了验证。新方法的(R值)比先前研究中使用的方法提高了10.3%。并且该方法主要在低速时提高了预测准确性,在高速时提高了精度,从而在整个步行速度范围内都能预测出正确的步行速度。因此,该方法提高了步行速度预测模型的性能,在高速或低速范围内均无偏差。该方法有潜力用于根据穿戴者的步态意图来控制下肢外骨骼的步态速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验